Joint multi-server cache sharing and delay-aware task scheduling for edge-cloud collaborative computing in intelligent manufacturing

Guardat en:
Dades bibliogràfiques
Publicat a:Wireless Networks vol. 31, no. 1 (Jan 2025), p. 261
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3163362268
003 UK-CbPIL
022 |a 1022-0038 
022 |a 1572-8196 
024 7 |a 10.1007/s11276-024-03761-x  |2 doi 
035 |a 3163362268 
045 2 |b d20250101  |b d20250131 
084 |a 53516  |2 nlm 
245 1 |a Joint multi-server cache sharing and delay-aware task scheduling for edge-cloud collaborative computing in intelligent manufacturing 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a The rapid advancement of intelligent manufacturing has led to an increasing demand for computing resources in industrial computing tasks. As a new computing paradigm, edge-cloud collaborative computing (E3C) fills the delay gap of traditional cloud computing for industrial computing tasks. Nevertheless, the E3C performance is heavily contingent upon task scheduling, which plays a pivotal role in influencing the effectiveness of E3C task execution. In this paper, we tackle the task scheduling problem by introducing a novel scheduling model and algorithm. Firstly, we establish a task scheduling optimization model to precisely carve the joint multi-server cache sharing and delay-aware task scheduling problem. We formulate the joint task scheduling model as a constrained combinatorial optimization problem and prove its NP-hardness. Simultaneously, given the heightened security requirements of manufacturing E3C compared to conventional E3C, we address the task security concerns during the scheduling process by incorporating task privacy levels and encryption techniques to safeguard the shared task caches in the established model. Secondly, to solve the near-optimal joint strategy composed of scheduling, caching and sharing strategies derived from the established model, we propose a scheduling algorithm based on the improved artificial bee colony algorithm. Finally, we conduct extensive experiments to verify our scheduling model and algorithm. Experimental results substantiate that our multi-server cache sharing mechanism can further decrease the task execution delay by 31.13% in comparison to the conventional task scheduling. Furthermore, the proposed scheduling algorithm demonstrates superior performance in terms of solution accuracy compared to existing algorithms. 
653 |a Scheduling 
653 |a Swarm intelligence 
653 |a Task scheduling 
653 |a Collaboration 
653 |a Delay 
653 |a Combinatorial analysis 
653 |a Cloud computing 
653 |a Resource scheduling 
653 |a Search algorithms 
653 |a Algorithms 
653 |a Manufacturing 
653 |a Cybersecurity 
653 |a Intelligent manufacturing systems 
653 |a Optimization models 
773 0 |t Wireless Networks  |g vol. 31, no. 1 (Jan 2025), p. 261 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163362268/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163362268/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch