Workload prioritization and optimal task scheduling in cloud: introduction to hybrid optimization algorithm

Guardat en:
Dades bibliogràfiques
Publicat a:Wireless Networks vol. 31, no. 1 (Jan 2025), p. 945
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3163362273
003 UK-CbPIL
022 |a 1022-0038 
022 |a 1572-8196 
024 7 |a 10.1007/s11276-024-03793-3  |2 doi 
035 |a 3163362273 
045 2 |b d20250101  |b d20250131 
084 |a 53516  |2 nlm 
245 1 |a Workload prioritization and optimal task scheduling in cloud: introduction to hybrid optimization algorithm 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Cloud computing represents an evolved form of cluster, client server, and grid computing, enabling users to seamlessly access resources over the internet. The quality and reliability of the cloud computing services are depends on the specific tasks undertaken by the users. Task Scheduling emerges as a pivotal factor in enhancing the efficiency and reliability of a cloud environment, aiming to optimize resource utilization. Furthermore, efficient task scheduling holds a prime importance in achieving superior performance, minimizing response time, reducing energy consumption and maximizing throughput. Assigning work to essential resources is a challenging process to achieve better performance. However, this paper plans to propose a novel workload prioritization and optimal task scheduling in the cloud with two steps. At first, the ranks are allotted to the tasks with Analytical Hierarchy Process based ranking process that uses a k-means clustering strategy to group the workloads. Then, the tasks are scheduled under the consideration of constraints like makespan, utilization cost, and migration cost and risk probability; based on priority. Accordingly, the task scheduling is done optimally by the proposed hybrid optimization Blue Updated Jellyfish Search Optimization that combines algorithms like Blue Monkey Optimization and Jelly fish Search Optimization algorithms. The performance of the proposed scheduling process is validated and proved over the conventional methods. 
653 |a Scheduling 
653 |a Task scheduling 
653 |a Analytic hierarchy process 
653 |a Cluster analysis 
653 |a Clustering 
653 |a Reliability 
653 |a Cloud computing 
653 |a Computational grids 
653 |a Optimization 
653 |a Resource scheduling 
653 |a Workload 
653 |a Algorithms 
653 |a Resource utilization 
653 |a Energy consumption 
653 |a Workloads 
653 |a Response time (computers) 
653 |a Vector quantization 
653 |a Client servers 
653 |a Priority scheduling 
773 0 |t Wireless Networks  |g vol. 31, no. 1 (Jan 2025), p. 945 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163362273/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163362273/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch