Prediction of mechanical characteristics of shearer intelligent cables under bending conditions

Збережено в:
Бібліографічні деталі
Опубліковано в::PLoS One vol. 20, no. 2 (Feb 2025), p. e0318767
Автор: Zhao, Lijuan
Інші автори: Wang, Dongyang, Lin, Guocong, Tian, Shuo, Zhang, Hongqiang, Wang, Yadong
Опубліковано:
Public Library of Science
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3163422629
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0318767  |2 doi 
035 |a 3163422629 
045 2 |b d20250201  |b d20250228 
084 |a 174835  |2 nlm 
100 1 |a Zhao, Lijuan 
245 1 |a Prediction of mechanical characteristics of shearer intelligent cables under bending conditions 
260 |b Public Library of Science  |c Feb 2025 
513 |a Journal Article 
520 3 |a The frequent bending of shearer cables during operation often leads to mechanical fatigue, posing risks to equipment safety. Accurately predicting the mechanical properties of these cables under bending conditions is crucial for improving the reliability and service life of shearers. This paper proposes a shearer optical fiber cable mechanical characteristics prediction model based on Temporal Convolutional Network (TCN), Bidirectional Long Short-Term Memory (BiLSTM), and Squeeze-and-Excitation Attention (SEAttention), referred to as the TCN-BiLSTM-SEAttention model. This method leverages TCN’s causal and dilated convolution operations to capture long-term sequential features, BiLSTM’s bidirectional information processing to ensure the completeness of sequence information, and the SEAttention mechanism to assign adaptive weights to features, effectively enhancing the focus on key features. The model’s performance is validated through comparisons with multiple other models, and the contributions of input features to the model’s predictions are quantified using Shapley Additive Explanations (SHAP). By learning the stress variation patterns between the optical fiber, power conductor, and control conductor in the shearer cable, the model enables accurate prediction of the stress in other cable conductors based on optical fiber stress data. Experiments were conducted using a shearer optical fiber cable bending simulation dataset with traction speeds of 6 m/min, 8 m/min, and 10 m/min. The results show that, compared to other predictive models, the proposed model achieves reductions in Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) to 0.0002, 0.0159, and 0.0126, respectively, with the coefficient of determination (R2) increasing to 0.981. The maximum deviation between predicted and actual values is only 0.86%, demonstrating outstanding prediction accuracy. SHAP feature analysis reveals that the control conductor features have the most substantial influence on predictions, with a SHAP value of 0.095. The research shows that the TCN-BiLSTM-SEAttention model demonstrates outstanding predictive capability under complex operating conditions, providing a novel approach for improving cable management and equipment safety through optical fiber monitoring technology in the intelligent development of coal mines, highlighting the potential of deep learning in complex mechanical predictions. 
653 |a Mechanical properties 
653 |a Bending fatigue 
653 |a Mines 
653 |a Coal mining 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Fiber optics 
653 |a Predictive control 
653 |a Service life 
653 |a Long short-term memory 
653 |a Optical memory (data storage) 
653 |a Time series 
653 |a Prediction models 
653 |a Efficiency 
653 |a Optical properties 
653 |a Machine learning 
653 |a Cables 
653 |a Fault diagnosis 
653 |a Network reliability 
653 |a Root-mean-square errors 
653 |a Neural networks 
653 |a Bending machines 
653 |a Working conditions 
653 |a Optical fibers 
653 |a Conductors 
653 |a Information processing 
653 |a Coal mines 
653 |a Safety management 
653 |a Environmental 
700 1 |a Wang, Dongyang 
700 1 |a Lin, Guocong 
700 1 |a Tian, Shuo 
700 1 |a Zhang, Hongqiang 
700 1 |a Wang, Yadong 
773 0 |t PLoS One  |g vol. 20, no. 2 (Feb 2025), p. e0318767 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163422629/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163422629/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163422629/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch