Making the most of Artificial Intelligence and Large Language Models to support collection development in health sciences libraries

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Journal of the Medical Library Association vol. 113, no. 1 (Jan 2025), p. 92
Päätekijä: Portillo, Ivan
Muut tekijät: Carson, David
Julkaistu:
University Library System, University of Pittsburgh
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3163927458
003 UK-CbPIL
022 |a 1536-5050 
022 |a 1558-9439 
022 |a 0025-7338 
024 7 |a 10.5195/jmla.2025.2079  |2 doi 
035 |a 3163927458 
045 2 |b d20250101  |b d20250131 
084 |a 67341  |2 nlm 
100 1 |a Portillo, Ivan 
245 1 |a Making the most of Artificial Intelligence and Large Language Models to support collection development in health sciences libraries 
260 |b University Library System, University of Pittsburgh  |c Jan 2025 
513 |a Journal Article 
520 3 |a This project investigated the potential of generative Al models in aiding health sciences librarians with collection development. Researchers at Chapman University's Harry and Diane Rinker Health Science campus evaluated four generative Al models-ChatGPT 4.0, Google Gemini, Perplexity, and Microsoft Copilot-over six months starting in March 2024. Two prompts were used: one to generate recent eBook titles in specific health sciences fields and another to identify subject gaps in the existing collection. The first prompt revealed inconsistencies across models, with Copilot and Perplexity providing sources but also inaccuracies. The second prompt yielded more useful results, with all models offering helpful analysis and accurate Library of Congress call numbers. The findings suggest that Large Language Models (LLMs) are not yet reliable as primary tools for collection development due to inaccuracies and hallucinations. However, they can serve as supplementary tools for analyzing subject coverage and identifying gaps in health sciences collections. 
610 4 |a Library of Congress Chapman University 
653 |a Language 
653 |a User services 
653 |a Pharmacy 
653 |a E-books 
653 |a Integrated library systems-ILS 
653 |a Medical libraries 
653 |a Library collections 
653 |a Researchers 
653 |a Librarians 
653 |a Physical therapy 
653 |a Library cataloging 
653 |a Health sciences 
653 |a Hallucinations 
653 |a Collection development 
653 |a Large language models 
653 |a Generative artificial intelligence 
653 |a Chatbots 
653 |a Physician assistants 
653 |a Library associations 
653 |a Information retrieval 
653 |a Collection analysis 
653 |a Information professionals 
653 |a Libraries 
653 |a Collection 
653 |a Health 
653 |a Science 
653 |a Artificial intelligence 
653 |a Language modeling 
700 1 |a Carson, David 
773 0 |t Journal of the Medical Library Association  |g vol. 113, no. 1 (Jan 2025), p. 92 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163927458/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163927458/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163927458/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch