Tracking indoor construction progress by deep-learning-based analysis of site surveillance video

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Construction Innovation vol. 25, no. 2 (2025), p. 461-489
المؤلف الرئيسي: Johnny Kwok Wai Wong
مؤلفون آخرون: Bameri, Fateme, Alireza Ahmadian Fard Fini, Maghrebi, Mojtaba
منشور في:
Emerald Group Publishing Limited
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3163979367
003 UK-CbPIL
022 |a 1471-4175 
022 |a 1477-0857 
022 |a 0968-0365 
024 7 |a 10.1108/CI-10-2022-0275  |2 doi 
035 |a 3163979367 
045 2 |b d20250401  |b d20250630 
084 |a 66696  |2 nlm 
100 1 |a Johnny Kwok Wai Wong  |u School of Built Environment, Faculty of Design, Architecture and Building, University of Technology Sydney, Sydney, Australia 
245 1 |a Tracking indoor construction progress by deep-learning-based analysis of site surveillance video 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeAccurate and rapid tracking and counting of building materials are crucial in managing on-site construction processes and evaluating their progress. Such processes are typically conducted by visual inspection, making them time-consuming and error prone. This paper aims to propose a video-based deep-learning approach to the automated detection and counting of building materials.Design/methodology/approachA framework for accurately counting building materials at indoor construction sites with low light levels was developed using state-of-the-art deep learning methods. An existing object-detection model, the You Only Look Once version 4 (YOLO v4) algorithm, was adapted to achieve rapid convergence and accurate detection of materials and site operatives. Then, DenseNet was deployed to recognise these objects. Finally, a material-counting module based on morphology operations and the Hough transform was applied to automatically count stacks of building materials.FindingsThe proposed approach was tested by counting site operatives and stacks of elevated floor tiles in video footage from a real indoor construction site. The proposed YOLO v4 object-detection system provided higher average accuracy within a shorter time than the traditional YOLO v4 approach.Originality/valueThe proposed framework makes it feasible to separately monitor stockpiled, installed and waste materials in low-light construction environments. The improved YOLO v4 detection method is superior to the current YOLO v4 approach and advances the existing object detection algorithm. This framework can potentially reduce the time required to track construction progress and count materials, thereby increasing the efficiency of work-in-progress evaluation. It also exhibits great potential for developing a more reliable system for monitoring construction materials and activities. 
653 |a Accuracy 
653 |a Construction materials 
653 |a Estimates 
653 |a Stacks 
653 |a Workflow 
653 |a Automation 
653 |a Tracking 
653 |a Light levels 
653 |a Error detection 
653 |a Construction industry 
653 |a Construction sites 
653 |a Radio frequency 
653 |a Waste materials 
653 |a Decision making 
653 |a Neural networks 
653 |a Hough transformation 
653 |a Algorithms 
653 |a Building materials 
653 |a Object recognition 
653 |a Deep learning 
653 |a Counting 
653 |a Construction 
653 |a Economic 
700 1 |a Bameri, Fateme  |u Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
700 1 |a Alireza Ahmadian Fard Fini  |u School of Built Environment, Faculty of Design, Architecture and Building, University of Technology Sydney, Sydney, Australia 
700 1 |a Maghrebi, Mojtaba  |u School of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
773 0 |t Construction Innovation  |g vol. 25, no. 2 (2025), p. 461-489 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163979367/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch