MARC

LEADER 00000nab a2200000uu 4500
001 3164225925
003 UK-CbPIL
022 |a 1027-5606 
022 |a 1607-7938 
024 7 |a 10.5194/hess-29-733-2025  |2 doi 
035 |a 3164225925 
045 2 |b d20250101  |b d20251231 
084 |a 123631  |2 nlm 
100 1 |a Chen, Huili  |u School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK 
245 1 |a Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Glacial lake outburst floods (GLOFs) are widely recognised as one of the most devastating natural hazards in the Himalayas, with catastrophic consequences, including substantial loss of life. To effectively mitigate these risks and enhance regional resilience, it is imperative to conduct an objective and holistic assessment of GLOF hazards and their potential impacts over a large spatial scale. However, this is challenged by the limited availability of data and the inaccessibility to most of the glacial lakes in high-altitude areas. The data challenge is exacerbated when dealing with multiple lakes across an expansive spatial area. This study aims to exploit remote sensing techniques, well-established Bayesian regression models for estimating glacial lake conditions, cutting-edge flood modelling technology, and open data from various sources to innovate a framework for assessing the national exposure and impact of GLOFs. In the innovative framework, multi-temporal imagery is utilised with a random forest model to extract glacial lake water surfaces. Bayesian models are employed to estimate a plausible range of glacial lake water volumes and the associated GLOF peak discharges while accounting for the uncertainty stemming from the limited sizes of the available data and outliers within the data. A significant number of GLOF scenarios is subsequently generated based on this estimated plausible range of peak discharges. A graphics processing unit (GPU)-based hydrodynamic model is then adopted to simulate the resulting flood hydrodynamics in different GLOF scenarios. Necessary socio-economic information is collected and processed from multiple sources, including OpenStreetMap, Google Earth, local archives, and global data products, to support exposure analysis. Established depth–damage curves are used to assess the GLOF damage extents for different exposures. The evaluation framework is applied to 21 glacial lakes identified as potentially dangerous in the Nepalese Himalayas. The results indicate that, in the scenario of a complete breach of dam height across 21 lakes, Tsho Rolpa Lake, Thulagi Lake, and Lower Barun Lake bear the most serious impacts of GLOFs on buildings, roads, and agricultural areas, while Thulagi Lake could influence existing hydropower facilities. One unnamed lake in the Trishuli River basin, two unnamed lakes in the Tamor River basin, and three unnamed lakes in the Dudh River basin have the potential to impact more than 200 buildings. Moreover, the unnamed lake in the Trishuli River basin has the potential to inundate existing hydropower facilities. 
651 4 |a Nepal 
651 4 |a Himalaya Mountains 
653 |a Sparsity 
653 |a River basins 
653 |a Outliers (statistics) 
653 |a Regression models 
653 |a Hydrodynamics 
653 |a High altitude 
653 |a Glacial lakes 
653 |a Regression analysis 
653 |a Socioeconomic aspects 
653 |a Remote sensing 
653 |a Rivers 
653 |a Damage detection 
653 |a Damage assessment 
653 |a Availability 
653 |a Sensing techniques 
653 |a Hydroelectric power 
653 |a Uncertainty 
653 |a Floods 
653 |a Buildings 
653 |a Bayesian analysis 
653 |a Spatial data 
653 |a Lakes 
653 |a Graphics processing units 
653 |a Exposure 
653 |a Remote sensing techniques 
653 |a Open data 
653 |a Outbursts 
653 |a Information processing 
653 |a Probability theory 
653 |a Digital mapping 
653 |a Glacial lake outburst floods 
653 |a Water discharge 
653 |a Hydrology 
653 |a Hazard assessment 
653 |a Lake water 
653 |a Risk assessment 
653 |a Hazard mitigation 
653 |a Graphics 
653 |a Infrastructure 
653 |a Satellites 
653 |a Mathematical models 
653 |a Bayesian theory 
653 |a Hydrodynamic models 
653 |a Environmental 
700 1 |a Liang, Qiuhua  |u School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK 
700 1 |a Zhao, Jiaheng  |u FM Research Division, FM Center, 288 Pasir Panjang Road, 117369, Singapore 
700 1 |a Sudan, Bikash Maharjan  |u International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal 
773 0 |t Hydrology and Earth System Sciences  |g vol. 29, no. 3 (2025), p. 733 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3164225925/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3164225925/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3164225925/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch