An Explainable Probabilistic Model for Health Monitoring of Concrete Dam via Optimized Sparse Bayesian Learning and Sensitivity Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Structural Control and Health Monitoring (Online) vol. 2023, no. 1 (2023)
Autor principal: Lin Chaoning
Otros Autores: Chen Siyu, Hariri-Ardebili Mohammad Amin, Li Tongchun
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3164359222
003 UK-CbPIL
022 |a 1545-2263 
024 7 |a 10.1155/2023/2979822  |2 doi 
035 |a 3164359222 
045 2 |b d20230101  |b d20231231 
084 |a 239329  |2 nlm 
100 1 |a Lin Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China, hhu.edu.cn; College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu, China, hhu.edu.cn 
245 1 |a An Explainable Probabilistic Model for Health Monitoring of Concrete Dam via Optimized Sparse Bayesian Learning and Sensitivity Analysis 
260 |b John Wiley & Sons, Inc.  |c 2023 
513 |a Journal Article 
520 3 |a Machine learning has become increasingly popular for modeling dam behavior due to its ability to capture complex relationships between input parameters and dam behavior responses. However, the use of sophisticated machine learning methods for monitoring dam behaviors and making decisions is often hindered by model uncertainty and a lack of interpretability. This paper introduces a novel model for dam health monitoring, focused on monitoring radial displacement and seepage, using optimized sparse Bayesian learning and sensitivity analysis. The model hyperparameters are optimized using an intelligent optimization method integrating the multi‐population Rao algorithm and blocked cross‐validation, while sensitivity analysis is employed to calculate the relative importance of input variables for a better understanding of the dam’s state. The effectiveness of the proposed model is verified by using long‐term monitoring data of a prototype concrete arch dam. The results confirm that the proposed model provides satisfactory performance on both the point predictions and the interval predictions for dam structural behaviors while obtaining effective explainability. 
653 |a Concrete dams 
653 |a Structural behavior 
653 |a Arch dams 
653 |a Machine learning 
653 |a Behavior 
653 |a Probabilistic models 
653 |a Monitoring methods 
653 |a Bayesian analysis 
653 |a Sensitivity analysis 
653 |a Parameter sensitivity 
653 |a Seepage 
653 |a Effectiveness 
653 |a Algorithms 
653 |a Parameter uncertainty 
653 |a Detention dams 
653 |a Learning algorithms 
653 |a Economic 
700 1 |a Chen Siyu  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu, China, nhri.cn 
700 1 |a Hariri-Ardebili Mohammad Amin  |u Department of Civil Environmental and Architectural Engineering, University of Colorado, Boulder, CO, USA, colorado.edu; College of Computer, Mathematical and Natural Sciences, University of Maryland, College Park, MD, USA, umaryland.edu 
700 1 |a Li Tongchun  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, Jiangsu, China, hhu.edu.cn 
773 0 |t Structural Control and Health Monitoring (Online)  |g vol. 2023, no. 1 (2023) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3164359222/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch