Addressing Label Noise in Colorectal Cancer Classification Using Cross-Entropy Loss and pLOF Methods With Stacking-Ensemble Technique

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Computational Intelligence and Soft Computing vol. 2025 (2025)
Autor principal: Tani, Ishrat Zahan
Altres autors: Kah Ong Michael Goh, Islam, Md Nazmul, Md Tarek Aziz, Mahmud, S M Hasan, Nandi, Dip
Publicat:
John Wiley & Sons, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3164853086
003 UK-CbPIL
022 |a 1687-9724 
022 |a 1687-9732 
024 7 |a 10.1155/acis/6552580  |2 doi 
035 |a 3164853086 
045 2 |b d20250101  |b d20251231 
084 |a 130236  |2 nlm 
100 1 |a Tani, Ishrat Zahan  |u Department of Computer Science & Engineering Rajshahi University of Engineering & Technology (RUET) Kazla, Rajshahi 6204 Bangladesh; Centre for Advanced Machine Learning and Applications (CAMLAs) Dhaka 1229 Bangladesh 
245 1 |a Addressing Label Noise in Colorectal Cancer Classification Using Cross-Entropy Loss and pLOF Methods With Stacking-Ensemble Technique 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a Colorectal cancer is a significant global health issue, ranking as the third most common cancer and the second leading cause of cancer-related deaths worldwide. Early diagnosis of this disease is of utmost importance to increase the survival rate and enhance the healthcare system. Many machine learning (ML) and deep learning (DL) methods have been proposed to facilitate automated early diagnosis of this cancer. However, label noise in medical images and the dependence on a single model can lead to suboptimal model performance, which could potentially hinder the development of a sophisticated automated solution. In this paper, we address label noise in training data and propose a stacking-ensemble model for classifying colorectal cancer along with a trustworthy computer-aided diagnosis (CAD) system. Initially, a variety of filtering methods are extensively analyzed to determine the most suitable image representation, with subsequent data augmentation techniques. Second, a modified VGG-16 model was proposed with fine-tuning that was utilized as a feature extractor to extract meaningful features from the training samples. Third, a prediction uncertainty and probabilistic local outlier factor (pLOF) were applied to the extracted features to address the label noise issue in the training data. Fourth, we adopted a random forest–based recursive feature elimination (RF-RFE) feature selection method with various combinations of features to recursively select the most influential ones for accurate predictions. Fifth, four base ML classifiers and a metamodel were selected to build our final stacking-ensemble model, which integrates the prediction probabilities of multiple models into a meta-feature set to ensure trustworthy predictions. Finally, we integrated these strategies and deployed them into a web application to demonstrate a CAD system. This system not only predicts the disease but also generates the prediction probabilities of each class, which enhances both clarity and diagnostic insight. Our proposed model was compared with different state-of-the-art ML classifiers on a publicly available dataset and demonstrated the highest accuracy of 92.43%. 
651 4 |a Europe 
653 |a Feature extraction 
653 |a Outliers (statistics) 
653 |a Accuracy 
653 |a Labels 
653 |a Datasets 
653 |a Classification 
653 |a Applications programs 
653 |a Noise prediction 
653 |a Public health 
653 |a Medical imaging 
653 |a Feature selection 
653 |a Diagnosis 
653 |a Colorectal cancer 
653 |a Machine learning 
653 |a Entropy 
653 |a Data augmentation 
653 |a Medical prognosis 
653 |a Feces 
653 |a Image filters 
653 |a Cancer 
653 |a Neural networks 
653 |a Medical research 
653 |a Support vector machines 
653 |a Computer aided design--CAD 
653 |a Literature reviews 
653 |a Deep learning 
653 |a Trustworthiness 
653 |a Metamodels 
700 1 |a Kah Ong Michael Goh  |u Faculty of Information Science & Technology (FIST) Multimedia University Jalan Ayer Keroh Lama, Melaka 75450 Malaysia 
700 1 |a Islam, Md Nazmul  |u Department of Computer Science & Engineering Rajshahi University of Engineering & Technology (RUET) Kazla, Rajshahi 6204 Bangladesh; Centre for Advanced Machine Learning and Applications (CAMLAs) Dhaka 1229 Bangladesh 
700 1 |a Md Tarek Aziz  |u Centre for Advanced Machine Learning and Applications (CAMLAs) Dhaka 1229 Bangladesh 
700 1 |a Mahmud, S M Hasan  |u Centre for Advanced Machine Learning and Applications (CAMLAs) Dhaka 1229 Bangladesh; Department of Computer Science American International University-Bangladesh (AIUB) 408/1, Kuratoli, Khilkhet, Dhaka 1229 Bangladesh 
700 1 |a Nandi, Dip  |u Department of Computer Science American International University-Bangladesh (AIUB) 408/1, Kuratoli, Khilkhet, Dhaka 1229 Bangladesh 
773 0 |t Applied Computational Intelligence and Soft Computing  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3164853086/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3164853086/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3164853086/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch