Using drawings and deep neural networks to characterize the building blocks of human visual similarity

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Memory & Cognition vol. 53, no. 1 (Jan 2025), p. 219
المؤلف الرئيسي: Mukherjee, Kushin
مؤلفون آخرون: Rogers, Timothy T
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3165147426
003 UK-CbPIL
022 |a 0090-502X 
022 |a 1532-5946 
024 7 |a 10.3758/s13421-024-01580-1  |2 doi 
035 |a 3165147426 
045 2 |b d20250101  |b d20250131 
084 |a 162334  |2 nlm 
100 1 |a Mukherjee, Kushin  |u Department of Psychology & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA 
245 1 |a Using drawings and deep neural networks to characterize the building blocks of human visual similarity 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Early in life and without special training, human beings discern resemblance between abstract visual stimuli, such as drawings, and the real-world objects they represent. We used this capacity for visual abstraction as a tool for evaluating deep neural networks (DNNs) as models of human visual perception. Contrasting five contemporary DNNs, we evaluated how well each explains human similarity judgments among line drawings of recognizable and novel objects. For object sketches, human judgments were dominated by semantic category information; DNN representations contributed little additional information. In contrast, such features explained significant unique variance perceived similarity of abstract drawings. In both cases, a vision transformer trained to blend representations of images and their natural language descriptions showed the greatest ability to explain human perceptual similarity-an observation consistent with contemporary views of semantic representation and processing in the human mind and brain. Together, the results suggest that the building blocks of visual similarity may arise within systems that learn to use visual information, not for specific classification, but in service of generating semantic representations of objects. 
653 |a Visual perception 
653 |a Photographs 
653 |a Sketches 
653 |a Vision systems 
653 |a Drawing 
653 |a Neural networks 
653 |a Classification 
653 |a Neurosciences 
653 |a Information processing 
653 |a Visual stimuli 
653 |a Cognition & reasoning 
653 |a Semantics 
653 |a Natural language 
653 |a Visual similarity 
653 |a Perceptual similarity 
653 |a Brain 
653 |a Art 
653 |a Humans 
653 |a Semantic categories 
653 |a Drawings 
653 |a Semantic processing 
653 |a Line drawings 
653 |a Information 
653 |a Speech perception 
700 1 |a Rogers, Timothy T  |u Department of Psychology & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA 
773 0 |t Memory & Cognition  |g vol. 53, no. 1 (Jan 2025), p. 219 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165147426/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3165147426/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165147426/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch