Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:BMC Bioinformatics vol. 26 (2025), p. 1
المؤلف الرئيسي: Zhang, Meng
مؤلفون آخرون: Parker, Joel, An, Lingling, Liu, Yiwen, Sun, Xiaoxiao
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3165418133
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-025-06054-y  |2 doi 
035 |a 3165418133 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Zhang, Meng 
245 1 |a Flexible analysis of spatial transcriptomics data (FAST): a deconvolution approach 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a MotivationSpatial transcriptomics is a state-of-art technique that allows researchers to study gene expression patterns in tissues over the spatial domain. As a result of technical limitations, the majority of spatial transcriptomics techniques provide bulk data for each sequencing spot. Consequently, in order to obtain high-resolution spatial transcriptomics data, performing deconvolution becomes essential. Most existing deconvolution methods rely on reference data (e.g., single-cell data), which may not be available in real applications. Current reference-free methods encounter limitations due to their dependence on distribution assumptions, reliance on marker genes, or the absence of leveraging histology and spatial information. Consequently, there is a critical need for the development of highly flexible, robust, and user-friendly reference-free deconvolution methods capable of unifying or leveraging case-specific information in the analysis of spatial transcriptomics data.ResultsWe propose a novel reference-free method based on regularized non-negative matrix factorization (NMF), named Flexible Analysis of Spatial Transcriptomics (FAST), that can effectively incorporate gene expression data, spatial, and histology information into a unified deconvolution framework. Compared to existing methods, FAST imposes fewer distribution assumptions, utilizes the spatial structure information of tissues, and encourages interpretable factorization results. These features enable greater flexibility and accuracy, making FAST an effective tool for deciphering the complex cell-type composition of tissues and advancing our understanding of various biological processes and diseases. Extensive simulation studies have shown that FAST outperforms other existing reference-free methods. In real data applications, FAST is able to uncover the underlying tissue structures and identify the corresponding marker genes. 
653 |a Data analysis 
653 |a Spatial analysis 
653 |a Gene expression 
653 |a Spatial distribution 
653 |a Histology 
653 |a Spatial data 
653 |a Genes 
653 |a Gene sequencing 
653 |a Biological effects 
653 |a Deconvolution 
653 |a Biomarkers 
653 |a Composition effects 
653 |a Methods 
653 |a Transcriptomics 
653 |a Information processing 
653 |a Euclidean space 
653 |a Algorithms 
653 |a Biological activity 
653 |a Factorization 
653 |a Environmental 
700 1 |a Parker, Joel 
700 1 |a An, Lingling 
700 1 |a Liu, Yiwen 
700 1 |a Sun, Xiaoxiao 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165418133/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3165418133/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165418133/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch