DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:BMC Bioinformatics vol. 26 (2025), p. 1
מחבר ראשי: Yang, Guang
מחברים אחרים: Liu, Yinbo, Wen, Sijian, Chen, Wenxi, Zhu, Xiaolei, Wang, Yongmei
יצא לאור:
Springer Nature B.V.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3165418153
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-024-06021-z  |2 doi 
035 |a 3165418153 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Yang, Guang 
245 1 |a DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework’s efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features. 
653 |a Feature extraction 
653 |a Deep learning 
653 |a Datasets 
653 |a Network topologies 
653 |a Drug interactions 
653 |a Bioinformatics 
653 |a Multilayers 
653 |a Data mining 
653 |a Principal components analysis 
653 |a Optimization 
653 |a Ablation 
653 |a Feature selection 
653 |a Drug development 
653 |a Redundancy 
653 |a Proteins 
653 |a Predictions 
653 |a Graph neural networks 
653 |a Drug discovery 
653 |a Neural networks 
653 |a Algorithms 
653 |a Ligands 
653 |a Resultants 
653 |a Encoding-Decoding 
653 |a Methods 
653 |a Information processing 
653 |a Graphical representations 
653 |a Semantics 
653 |a Environmental 
700 1 |a Liu, Yinbo 
700 1 |a Wen, Sijian 
700 1 |a Chen, Wenxi 
700 1 |a Zhu, Xiaolei 
700 1 |a Wang, Yongmei 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165418153/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3165418153/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165418153/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch