Validation of ten federated learning strategies for multi-contrast image-to-image MRI data synthesis from heterogeneous sources

Guardado en:
Bibliografiske detaljer
Udgivet i:bioRxiv (Feb 11, 2025)
Hovedforfatter: Fiszer, Jan
Andre forfattere: Ciupek, Dominika, Malawski, Maciej, Pieciak, Tomasz
Udgivet:
Cold Spring Harbor Laboratory Press
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3165538467
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.09.637305  |2 doi 
035 |a 3165538467 
045 0 |b d20250211 
100 1 |a Fiszer, Jan 
245 1 |a Validation of ten federated learning strategies for multi-contrast image-to-image MRI data synthesis from heterogeneous sources 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 11, 2025 
513 |a Working Paper 
520 3 |a Deep learning (DL)-based image synthesis has recently gained enormous interest in medical imaging, allowing for generating multi-contrast data and therefore, the recovery of missing samples from interrupted or artefact-distorted acquisitions. However, the accuracy of DL models heavily relies on the representativeness of the training datasets naturally characterized by their distributions, experimental setups or preprocessing schemes. These complicate generalizing DL models across multi-site heterogeneous data sets while maintaining the confidentiality of the data. One of the possible solutions is to employ federated learning (FL), which enables the collaborative training of a DL model in a decentralized manner, demanding the involved sites to share only the characteristics of the models without transferring their sensitive medical data. The paper presents a DL-based magnetic resonance (MR) data translation in a FL way. We introduce a new aggregation strategy called FedBAdam that couples two state-of-the-art methods with complementary strengths by incorporating momentum in the aggregation scheme and skipping the batch normalization layers. The work comprehensively validates 10 FL-based strategies for an image-to-image multi-contrast MR translation, considering healthy and tumorous brain scans from five different institutions. Our study has revealed that the FedBAdam shows superior results in terms of mean squared error and structural similarity index over personalized methods, like the FedMRI, and standard FL-based aggregation techniques, such as the FedAvg or FedProx, considering multi-site multi-vendor heterogeneous environment. The FedBAdam has prevented the overfitting of the model and gradually reached the optimal model parameters, exhibiting no oscillations.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Brain tumors 
653 |a Oscillations 
653 |a Translation 
653 |a Models 
653 |a Neuroimaging 
653 |a Deep learning 
700 1 |a Ciupek, Dominika 
700 1 |a Malawski, Maciej 
700 1 |a Pieciak, Tomasz 
773 0 |t bioRxiv  |g (Feb 11, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165538467/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.09.637305v1