Temporal dose inversion properties of adaptive biomolecular circuits

Gardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Feb 11, 2025)
Autor Principal: Nakamura, Eiji
Outros autores: Blanchini, Franco, Giordano, Giulia, Hoffmann, Alexander, Franco, Elisa
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3165538639
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.10.636967  |2 doi 
035 |a 3165538639 
045 0 |b d20250211 
100 1 |a Nakamura, Eiji 
245 1 |a Temporal dose inversion properties of adaptive biomolecular circuits 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 11, 2025 
513 |a Working Paper 
520 3 |a Cells have the capacity to encode and decode information in the temporal features of molecular signals. Many pathways, for example, generate either sustained or pulsatile responses depending on the context, and such diverse temporal behaviors have a profound impact on cell fate. Here we focus on how molec- ular pathways can convert the temporal features of dynamic signals, in particular how they can convert transient signals into persistent downstream events and vice versa. We describe this type of behavior as temporal dose inversion, and we demonstrate that it can be achieved through adaptive molecular circuits. We consider motifs known as incoherent feedforward loop (IFFL) and negative feedback loop (NFL), and identify parametric conditions that enable temporal dose inversion. We next consider more complex versions of these circuits that could be realized using enzymatic signaling and gene regulatory networks, finding that both circuits can exhibit temporal dose inversion. Finally, we consider a general- ized IFFL topology, and we find that both the time delay in the inhibition pathway and the relative signal intensities of the activation and inhibition signals are key determinants for temporal dose inversion. Our investigation expands the potential use of adaptive circuits as signal processing units and contributes to our understanding of the role of adaptive circuits in nature.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/enaka74/IDR 
653 |a Signal processing 
653 |a Cell fate 
653 |a Temporal variations 
653 |a Information processing 
653 |a Circuits 
700 1 |a Blanchini, Franco 
700 1 |a Giordano, Giulia 
700 1 |a Hoffmann, Alexander 
700 1 |a Franco, Elisa 
773 0 |t bioRxiv  |g (Feb 11, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165538639/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.10.636967v1