Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme

Guardat en:
Dades bibliogràfiques
Publicat a:Communications Engineering vol. 4, no. 1 (Dec 2025), p. 18
Publicat:
Springer Nature B.V.
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3165589436
003 UK-CbPIL
022 |a 2731-3395 
024 7 |a 10.1038/s44172-025-00359-9  |2 doi 
035 |a 3165589436 
045 2 |b d20251201  |b d20251231 
245 1 |a Low-power Spiking Neural Network audio source localisation using a Hilbert Transform audio event encoding scheme 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Sound source localisation is used in many consumer devices, to isolate audio from individual speakers and reject noise. Localization is frequently accomplished by “beamforming”, which combines phase-shifted audio streams to increase power from chosen source directions, under a known microphone array geometry. Dense band-pass filters are often needed to obtain narrowband signal components from wideband audio. These approaches achieve high accuracy, but narrowband beamforming is computationally demanding, and not ideal for low-power IoT devices. We introduce a method for sound source localisation on arbitrary microphone arrays, designed for efficient implementation in ultra-low-power spiking neural networks (SNNs). We use a Hilbert transform to avoid dense band-pass filters, and introduce an event-based encoding method that captures the phase of the complex analytic signal. Our approach achieves high accuracy for SNN methods, comparable with traditional non-SNN super-resolution beamforming. We deploy our method to low-power SNN inference hardware, with much lower power consumption than super-resolution methods. We demonstrate that signal processing approaches co-designed with spiking neural network implementations can achieve much improved power efficiency. Our Hilbert-transform-based method for beamforming can also improve the efficiency of traditional digital signal processing.Sound source localisation is used in many consumer devices, to isolate audio from individual speakers and reject noise. Saeid Haghighatshoar and Dylan Richard Muir demonstrate a sound source localisation method from microphone arrays, using Hilbert-Transform-based audio-to-signed-event encoding and spiking neural networks. 
653 |a Hilbert transformation 
653 |a Localization method 
653 |a Sound filters 
653 |a Power efficiency 
653 |a Sound localization 
653 |a Neural networks 
653 |a Beamforming 
653 |a Digital signal processing 
653 |a Fourier transforms 
653 |a Signal processing 
653 |a Spiking 
653 |a Microphones 
653 |a Sound sources 
653 |a Power management 
653 |a Arrays 
653 |a Energy efficiency 
653 |a Narrowband 
653 |a Localization 
653 |a Geometry 
653 |a Bandpass filters 
653 |a Coding 
773 0 |t Communications Engineering  |g vol. 4, no. 1 (Dec 2025), p. 18 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165589436/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3165589436/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165589436/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch