Framework for Apple Phenotype Feature Extraction Using Instance Segmentation and Edge Attention Mechanism

Spremljeno u:
Bibliografski detalji
Izdano u:Agriculture vol. 15, no. 3 (2025), p. 305
Glavni autor: Wang, Zichong
Daljnji autori: Cui, Weiyuan, Huang, Chenjia, Zhou, Yuhao, Zhao, Zihan, Yue, Yuchen, Dong, Xinrui, Lv, Chunli
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3165753599
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15030305  |2 doi 
035 |a 3165753599 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Wang, Zichong  |u China Agricultural University, Beijing 100083, China 
245 1 |a Framework for Apple Phenotype Feature Extraction Using Instance Segmentation and Edge Attention Mechanism 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A method for apple phenotypic feature extraction and growth anomaly identification based on deep learning and natural language processing technologies is proposed in this paper, aiming to enhance the accuracy of apple quality detection and anomaly prediction in agricultural production. This method integrates instance segmentation, edge perception mechanisms, attention mechanisms, and multimodal data fusion to accurately extract an apple’s phenotypic features, such as its shape, color, and surface condition, while identifying potential anomalies which may arise during the growth process. Specifically, the edge transformer segmentation network is employed to combine deep convolutional networks (CNNs) with the Transformer architecture, enhancing feature extraction and modeling long-range dependencies across different regions of an image. The edge perception mechanism improves segmentation accuracy by focusing on the boundary regions of the apple, particularly in the case of complex shapes or surface damage. Additionally, the natural language processing (NLP) module analyzes agricultural domain knowledge, such as planting records and meteorological data, providing insights into potential causes of growth anomalies and enabling more accurate predictions. The experimental results demonstrate that the proposed method significantly outperformed traditional models across multiple metrics. Specifically, in the apple phenotypic feature extraction task, the model achieved exceptional performance, with accuracy of 0.95, recall of 0.91, precision of 0.93, and mean intersection over union (mIoU) of 0.92. Furthermore, in the growth anomaly identification task, the model also performed excellently, with a precision of 0.93, recall of 0.90, accuracy of 0.91, and mIoU of 0.89, further validating its efficiency and robustness in handling complex growth anomaly scenarios. The method’s integration of image data with agricultural knowledge provides a comprehensive approach to both apple quality detection and growth anomaly prediction, offering reliable decision support for agricultural production. The proposed method, by integrating image data with agricultural domain knowledge, provides precise decision support for agricultural production, not only improving the efficiency and accuracy of apple quality detection but also offering reliable technical assurance for agricultural economic analysis. 
653 |a Economic analysis 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Phenotypes 
653 |a Agriculture 
653 |a Image processing 
653 |a Data integration 
653 |a Perception 
653 |a Automation 
653 |a Machine learning 
653 |a Fruits 
653 |a Localization 
653 |a Genotype & phenotype 
653 |a Dimensional analysis 
653 |a Entropy 
653 |a Recall 
653 |a Data analysis 
653 |a Decision support systems 
653 |a Apples 
653 |a Image segmentation 
653 |a Computer vision 
653 |a Predictions 
653 |a Quality management 
653 |a Neural networks 
653 |a Classification 
653 |a Instance segmentation 
653 |a Methods 
653 |a Natural language processing 
653 |a Image quality 
653 |a Anomalies 
653 |a Meteorological data 
653 |a Semantics 
653 |a Economic 
653 |a Environmental 
700 1 |a Cui, Weiyuan  |u China Agricultural University, Beijing 100083, China; National School of Development, Peking University, Beijing 100871, China 
700 1 |a Huang, Chenjia  |u China Agricultural University, Beijing 100083, China; Faculty of Humanities, China University of Political Science and Law, Beijing 102249, China 
700 1 |a Zhou, Yuhao  |u China Agricultural University, Beijing 100083, China 
700 1 |a Zhao, Zihan  |u China Agricultural University, Beijing 100083, China; National School of Development, Peking University, Beijing 100871, China 
700 1 |a Yue, Yuchen  |u China Agricultural University, Beijing 100083, China; National School of Development, Peking University, Beijing 100871, China 
700 1 |a Dong, Xinrui  |u China Agricultural University, Beijing 100083, China; School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China 
700 1 |a Lv, Chunli  |u China Agricultural University, Beijing 100083, China 
773 0 |t Agriculture  |g vol. 15, no. 3 (2025), p. 305 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165753599/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165753599/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165753599/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch