Picking-Point Localization Algorithm for Citrus Fruits Based on Improved YOLOv8 Model

Gardado en:
Detalles Bibliográficos
Publicado en:Agriculture vol. 15, no. 3 (2025), p. 237
Autor Principal: Liang, Yun
Outros autores: Jiang, Weipeng, Liu, Yunfan, Wu, Zihao, Zheng, Run
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3165754089
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15030237  |2 doi 
035 |a 3165754089 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Liang, Yun 
245 1 |a Picking-Point Localization Algorithm for Citrus Fruits Based on Improved YOLOv8 Model 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The citrus picking-point localization is critical for automatic citrus harvesting. Due to the complex citrus growing environment and the limitations of devices, the efficient citrus picking-point localization method becomes a hot research topic. This study designs a novel and efficient workflow for citrus picking-point localization, named as CPPL. The CPPL is achieved based on two stages, namely the detection stage and the segmentation stage. For the detection stage, we define the KD-YOLOP to accurately detect citrus fruits to quickly localize the initial picking region. The KD-YOLOP is defined based on a knowledge distillation learning and a model pruning to reduce the computational cost while having a competitive accuracy. For the segmentation stage, we define the RG-YOLO-seg to efficiently segment the citrus branches to compute the picking points. The RG-YOLO-seg is proposed by introducing the RGNet to extract efficient features and using the GSNeck to fuse multi-scale features. Therefore, by using knowledge distillation, model pruning, and a lightweight model for branch segmentation, the proposed CPPL achieves accurate real-time localization of citrus picking points. We conduct extensive experiments to evaluate our method; many results show that the proposed CPPL outperforms the current methods and achieves adequate accuracy. It provides an efficient and robust novel method for real-time citrus harvesting in practical agricultural applications. 
653 |a Harvesting 
653 |a Accuracy 
653 |a Deep learning 
653 |a Citrus fruits 
653 |a Segmentation 
653 |a Optimization 
653 |a Workflow 
653 |a Localization 
653 |a Clustering 
653 |a Fruits 
653 |a Distillation 
653 |a Localization method 
653 |a Embedded systems 
653 |a Neural networks 
653 |a Picking 
653 |a Labor shortages 
653 |a Design 
653 |a Algorithms 
653 |a Apples 
653 |a Object recognition 
653 |a Real time 
653 |a Economic 
700 1 |a Jiang, Weipeng 
700 1 |a Liu, Yunfan 
700 1 |a Wu, Zihao 
700 1 |a Zheng, Run 
773 0 |t Agriculture  |g vol. 15, no. 3 (2025), p. 237 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165754089/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165754089/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165754089/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch