A Multi-Scale Feature Focus and Dynamic Sampling-Based Model for Hemerocallis fulva Leaf Disease Detection

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture vol. 15, no. 3 (2025), p. 262
1. Verfasser: Wang, Tao
Weitere Verfasser: Xia, Hongyi, Xie, Jiao, Li, Jianjun, Liu, Junwan
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3165754123
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15030262  |2 doi 
035 |a 3165754123 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Wang, Tao  |u College of Computer and Mathematics, Central South University of Forestry & Technology, Changsha 410004, China; <email>wangtao@csuft.edu.cn</email> (T.W.); <email>20222717@csuft.edu.cn</email> (J.X.); <email>t20010539@csuft.edu.cn</email> (J.L.) 
245 1 |a A Multi-Scale Feature Focus and Dynamic Sampling-Based Model for <i>Hemerocallis fulva</i> Leaf Disease Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Hemerocallis fulva, essential to urban ecosystems and landscape design, faces challenges in disease detection due to limited data and reduced accuracy in complex backgrounds. To address these issues, the Hemerocallis fulva leaf disease dataset (HFLD-Dataset) is introduced, alongside the Hemerocallis fulva Multi-Scale and Enhanced Network (HF-MSENet), an efficient model designed to improve multi-scale disease detection accuracy and reduce misdetections. The Channel–Spatial Multi-Scale Module (CSMSM) enhances the localization and capture of critical features, overcoming limitations in multi-scale feature extraction caused by inadequate attention to disease characteristics. The C3_EMSCP module improves multi-scale feature fusion by combining multi-scale convolutional kernels and group convolution, increasing fusion adaptability and interaction across scales. To address interpolation errors and boundary blurring in upsampling, the DySample module adapts sampling positions using a dynamic offset learning mechanism. This, combined with pixel reordering and grid sampling techniques, reduces interpolation errors and preserves edge details. Experimental results show that HF-MSENet achieves mAP@50 and mAP%50–95 scores of 94.9% and 80.3%, respectively, outperforming the baseline model by 1.8% and 6.5%. Compared to other models, HF-MSENet demonstrates significant advantages in efficiency and robustness, offering reliable support for precise disease detection in Hemerocallis fulva. 
651 4 |a Asia 
651 4 |a Yangtze River 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Adaptability 
653 |a Disease 
653 |a Landscape design 
653 |a Interpolation 
653 |a Modules 
653 |a Localization 
653 |a Sampling 
653 |a Disease detection 
653 |a Plant diseases 
653 |a Sampling methods 
653 |a Support vector machines 
653 |a Classification 
653 |a Data collection 
653 |a Methods 
653 |a Error reduction 
653 |a Algorithms 
653 |a Leaves 
653 |a Hemerocallis fulva 
653 |a Environmental 
700 1 |a Xia, Hongyi  |u College of Information Engineering, Hunan University of Applied Technology, Changde 415500, China; &lt;email&gt;20231200605@csuft.edu.cn&lt;/email&gt; 
700 1 |a Xie, Jiao  |u College of Computer and Mathematics, Central South University of Forestry &amp; Technology, Changsha 410004, China; &lt;email&gt;wangtao@csuft.edu.cn&lt;/email&gt; (T.W.); &lt;email&gt;20222717@csuft.edu.cn&lt;/email&gt; (J.X.); &lt;email&gt;t20010539@csuft.edu.cn&lt;/email&gt; (J.L.) 
700 1 |a Li, Jianjun  |u College of Computer and Mathematics, Central South University of Forestry &amp; Technology, Changsha 410004, China; &lt;email&gt;wangtao@csuft.edu.cn&lt;/email&gt; (T.W.); &lt;email&gt;20222717@csuft.edu.cn&lt;/email&gt; (J.X.); &lt;email&gt;t20010539@csuft.edu.cn&lt;/email&gt; (J.L.) 
700 1 |a Liu, Junwan  |u College of Computer and Mathematics, Central South University of Forestry &amp; Technology, Changsha 410004, China; &lt;email&gt;wangtao@csuft.edu.cn&lt;/email&gt; (T.W.); &lt;email&gt;20222717@csuft.edu.cn&lt;/email&gt; (J.X.); &lt;email&gt;t20010539@csuft.edu.cn&lt;/email&gt; (J.L.) 
773 0 |t Agriculture  |g vol. 15, no. 3 (2025), p. 262 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165754123/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165754123/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165754123/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch