Virtual Machine Placement in Edge Computing Based on Multi-Objective Reinforcement Learning

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 3 (2025), p. 633
Autor principal: Yi, Shanwen
Otros Autores: Hong, Shengyi, Yao Qin, Wang, Hua, Liu, Naili
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3165772017
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14030633  |2 doi 
035 |a 3165772017 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Yi, Shanwen  |u School of Computer Science and Technology, Shandong University, Jinan 250100, China; <email>yishanwen@sdu.edu.cn</email> 
245 1 |a Virtual Machine Placement in Edge Computing Based on Multi-Objective Reinforcement Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With the popularization of internet of things (IoT), the energy consumption of mobile edge computing (MEC) servers is also on the rise. Some important IoT applications, such as autonomous driving, smart manufacturing, and smart wearables, have high real-time requirements, making it imperative for edge computing to reduce task response latency. Virtual machine (VM) placement can effectively reduce the response latency of VM requests and the energy consumption of MEC servers. However, the existing work does not consider the selection of weighting coefficients for the optimization objectives and the feasibility of the solution. Besides, these algorithms scalarize the objective functions without considering the order-of-magnitude difference between objectives. To overcome the above problems, the article proposes an algorithm called EVMPRL for VM placement in edge computing based on reinforcement learning (RL). Our aim is to find the Pareto approximate solution set that achieves the trade-off between the response latency of VM requests and the energy consumption of MEC servers. EVMPRL is based on the Chebyshev scalarization function, which is able to efficiently solve the problem of selecting weighting coefficients for objectives. EVMPRL can always search for solutions in the feasible domain, which can be guaranteed by selecting the servers that can satisfy the current VM request as the next action. Furthermore, EVMPRL scalarizes the Q-values instead of the objective functions, thus avoiding the problem in previous work where the order-of-magnitude difference between the optimization objectives makes the impact of an objective function on the final result too small. Finally, we conduct experiments to prove that EVMPRL is superior to the state-of-the-art algorithm in terms of objectives and the solution set quality. 
653 |a Computer centers 
653 |a Placement 
653 |a Weighting 
653 |a Internet of Things 
653 |a Pheromones 
653 |a Edge computing 
653 |a Optimization 
653 |a Mobile computing 
653 |a Chebyshev approximation 
653 |a Algorithms 
653 |a Feasibility 
653 |a Objectives 
653 |a Machine learning 
653 |a Real time 
653 |a Energy consumption 
653 |a Cloud computing 
653 |a Pareto optimum 
653 |a Virtual environments 
700 1 |a Hong, Shengyi  |u Department of Investigation, Shanghai Police College, Shanghai 200137, China; <email>hongshengyi@mail.shpc.edu.cn</email> 
700 1 |a Yao Qin  |u Department of Investigation, Shanghai Police College, Shanghai 200137, China; <email>hongshengyi@mail.shpc.edu.cn</email> 
700 1 |a Wang, Hua  |u School of Software, Shandong University, Jinan 250100, China; <email>wanghua@sdu.edu.cn</email> 
700 1 |a Liu, Naili  |u School of Information Science and Engineering, Linyi University, Linyi 276000, China; <email>liunaili@lyu.edu.cn</email> 
773 0 |t Electronics  |g vol. 14, no. 3 (2025), p. 633 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165772017/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165772017/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165772017/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch