Achieving Excellence in Cyber Fraud Detection: A Hybrid ML+DL Ensemble Approach for Credit Cards
Gorde:
| Argitaratua izan da: | Applied Sciences vol. 15, no. 3 (2025), p. 1081 |
|---|---|
| Egile nagusia: | |
| Beste egile batzuk: | , , , |
| Argitaratua: |
MDPI AG
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3165777367 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2076-3417 | ||
| 024 | 7 | |a 10.3390/app15031081 |2 doi | |
| 035 | |a 3165777367 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231338 |2 nlm | ||
| 100 | 1 | |a Btoush, Eyad |u School of Business, University of Southern Queensland (UniSQ), Springfield, QLD 4300, Australia; <email>xujuan.zhou@unisq.edu.au</email> (X.Z.); <email>raj.gururajan@unisq.edu.au</email> (R.G.); <email>kc.chan@unisq.edu.au</email> (K.C.C.); <email>omar.alsodi@unisq.edu.au</email> (O.A.) | |
| 245 | 1 | |a Achieving Excellence in Cyber Fraud Detection: A Hybrid ML+DL Ensemble Approach for Credit Cards | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The rapid advancement of technology has increased the complexity of cyber fraud, presenting a growing challenge for the banking sector to efficiently detect fraudulent credit card transactions. Conventional detection approaches face challenges in adapting to the continuously evolving tactics of fraudsters. This study addresses these limitations by proposing an innovative hybrid model that integrates Machine Learning (ML) and Deep Learning (DL) techniques through a stacking ensemble and resampling strategies. The hybrid model leverages ML techniques including Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Logistic Regression (LR) alongside DL techniques such as Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory Network (BiLSTM) with attention mechanisms. By utilising the stacking ensemble method, the model consolidates predictions from multiple base models, resulting in improved predictive accuracy compared to individual models. The methodology incorporates robust data pre-processing techniques. Experimental evaluations demonstrate the superior performance of the hybrid ML+DL model, particularly in handling class imbalances and achieving a high F1 score, achieving an F1 score of 94.63%. This result underscores the effectiveness of the proposed model in delivering reliable cyber fraud detection, highlighting its potential to enhance financial transaction security. | |
| 653 | |a Machine learning | ||
| 653 | |a Accuracy | ||
| 653 | |a Datasets | ||
| 653 | |a Deep learning | ||
| 653 | |a Algorithms | ||
| 653 | |a Artificial intelligence | ||
| 653 | |a Cybercrime | ||
| 653 | |a Credit card processing | ||
| 653 | |a Credit card fraud | ||
| 653 | |a Fraud prevention | ||
| 653 | |a Support vector machines | ||
| 700 | 1 | |a Zhou, Xujuan |u School of Business, University of Southern Queensland (UniSQ), Springfield, QLD 4300, Australia; <email>xujuan.zhou@unisq.edu.au</email> (X.Z.); <email>raj.gururajan@unisq.edu.au</email> (R.G.); <email>kc.chan@unisq.edu.au</email> (K.C.C.); <email>omar.alsodi@unisq.edu.au</email> (O.A.) | |
| 700 | 1 | |a Gururajan, Raj |u School of Business, University of Southern Queensland (UniSQ), Springfield, QLD 4300, Australia; <email>xujuan.zhou@unisq.edu.au</email> (X.Z.); <email>raj.gururajan@unisq.edu.au</email> (R.G.); <email>kc.chan@unisq.edu.au</email> (K.C.C.); <email>omar.alsodi@unisq.edu.au</email> (O.A.); School of Computing, SRM Institute of Science and Technology, Chennai 603203, India | |
| 700 | 1 | |a Chan, Ka Ching |u School of Business, University of Southern Queensland (UniSQ), Springfield, QLD 4300, Australia; <email>xujuan.zhou@unisq.edu.au</email> (X.Z.); <email>raj.gururajan@unisq.edu.au</email> (R.G.); <email>kc.chan@unisq.edu.au</email> (K.C.C.); <email>omar.alsodi@unisq.edu.au</email> (O.A.) | |
| 700 | 1 | |a Alsodi, Omar |u School of Business, University of Southern Queensland (UniSQ), Springfield, QLD 4300, Australia; <email>xujuan.zhou@unisq.edu.au</email> (X.Z.); <email>raj.gururajan@unisq.edu.au</email> (R.G.); <email>kc.chan@unisq.edu.au</email> (K.C.C.); <email>omar.alsodi@unisq.edu.au</email> (O.A.) | |
| 773 | 0 | |t Applied Sciences |g vol. 15, no. 3 (2025), p. 1081 | |
| 786 | 0 | |d ProQuest |t Publicly Available Content Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3165777367/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3165777367/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3165777367/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |