A Systematic Review of Intelligent Systems and Analytic Applications in Credit Card Fraud Detection

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 3 (2025), p. 1356-1378
Autor principal: Oztemel Ercan
Otros Autores: Isik Muhammed
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The use of credit cards plays a crucial role in cash management and in meeting the needs for individual and commercial customers due to the spread of risks to the future by making monthly instalments instead of cash transactions. The use of credit cards therefore provides benefits not only to the customers but also to the banks as it enables and sustains a long-term relationship in between them. Despite the increase in the use of credit cards, there is also a significant increase in fraud transactions. To detect and prevent possible fraud operations, banks generally use rule-based techniques or analytical models. In this respect, analytical models have an important place due to their effectiveness, performance, and fast response. The main aim of this paper is therefore to enhance the theoretical and practical understanding of credit card fraud operations, review basic approaches, and propose a more comprehensive approach utilizing the agents. Note that in this study, static analytic modelling (existing approaches) and dynamic analytic modelling (emerging approaches) techniques are compared in terms of methodology, performance, and respective approaches. Since fraud methods and transactions are constantly changing over time, it is thought that there will be an increase in the use of agent-based models with dynamic analytical capabilities. Additionally, in this paper, a proposed model and empiric study are presented for an agent-based intelligent credit card fraud detection system.
ISSN:2076-3417
DOI:10.3390/app15031356
Fuente:Publicly Available Content Database