Quantitative Analysis of Peanut Skin Adulterants by Fourier Transform Near-Infrared Spectroscopy Combined with Chemometrics

Saved in:
Bibliographic Details
Published in:Foods vol. 14, no. 3 (2025), p. 466
Main Author: Luo, Wangfei
Other Authors: Deng, Jihong, Li, Chenxi, Jiang, Hui
Published:
MDPI AG
Subjects:
Online Access:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3165817809
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14030466  |2 doi 
035 |a 3165817809 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Luo, Wangfei 
245 1 |a Quantitative Analysis of Peanut Skin Adulterants by Fourier Transform Near-Infrared Spectroscopy Combined with Chemometrics 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Peanut skin is a potential medicinal material. The adulteration of peanut skin samples with starchy substances severely affects their medicinal value. This study aimed to quantitatively analyze the adulterants present in peanut skin using Fourier transform near-infrared (FT-NIR) spectroscopy. Two adulterants, sweet potato starch and corn starch, were included in this study. First, spectral information of the adulterated samples was collected for characterization. Then, the applicability of different preprocessing methods and techniques to the obtained spectral data was compared. Subsequently, the Competitive Adaptive Reweighted Sampling (CARS) algorithm was used to extract effective variables from the preprocessed spectral data, and Partial Least Squares Regression (PLSR), a Support Vector Machine (SVM), and a Black Kite Algorithm-Support Vector Machine (BKA-SVM) were employed to predict the adulterant content in the samples, as well as the overall adulteration level. The results showed that the BKA-SVM model performed excellently in predicting the content of sweet potato starch, corn starch, and overall adulterants, with determination coefficients (<inline-formula>RP2</inline-formula>) of 0.9833, 0.9893, and 0.9987, respectively. The experimental results indicate that FT-NIR spectroscopy combined with advanced machine learning techniques can effectively and accurately detect adulterants in peanut skin, providing a reliable technological support for food safety detection. 
653 |a Skin 
653 |a Food safety 
653 |a Potatoes 
653 |a Algorithms 
653 |a Adaptive sampling 
653 |a Least squares method 
653 |a Data processing 
653 |a Infrared analysis 
653 |a Starch 
653 |a Adulterants 
653 |a Chromatography 
653 |a Machine learning 
653 |a Fourier transforms 
653 |a Fourier analysis 
653 |a Infrared spectra 
653 |a Infrared spectroscopy 
653 |a Adaptive algorithms 
653 |a Spectrum analysis 
653 |a Support vector machines 
653 |a Vegetables 
653 |a Sweet potatoes 
653 |a Near infrared radiation 
653 |a Corn 
653 |a Quantitative analysis 
653 |a Data collection 
653 |a Methods 
653 |a Peanuts 
653 |a Legumes 
653 |a Spectroscopic analysis 
653 |a Microbiota 
653 |a Ipomoea batatas 
700 1 |a Deng, Jihong 
700 1 |a Li, Chenxi 
700 1 |a Jiang, Hui 
773 0 |t Foods  |g vol. 14, no. 3 (2025), p. 466 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165817809/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165817809/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165817809/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch