Investigating an Approximate Solution for a Fractional-Order Bagley–Torvik Equation by Applying the Hermite Wavelet Method

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 3 (2025), p. 528
Autor principal: Zhang, Yimiao
Otros Autores: Afridi, Muhammad Idrees, Muhammad Samad Khan, Amanullah
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3165828901
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13030528  |2 doi 
035 |a 3165828901 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhang, Yimiao  |u Research Center for Mathematical Modeling and Simulation, Hanjiang Normal University, Shiyan 442000, China 
245 1 |a Investigating an Approximate Solution for a Fractional-Order Bagley–Torvik Equation by Applying the Hermite Wavelet Method 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this paper, we introduce the Hermite wavelet method (HWM), a numerical method for the fractional-order Bagley–Torvik equation (BTE) solution. The recommended method is based on a polynomial called the Hermite polynomial. This method uses collocation points to turn the given differential equation into an algebraic equation system. We can find the values of the unknown constants after solving the system of equations using the Maple program. The required approximation of the answer was obtained by entering the numerical values of the unknown constants. The approximate solution for the given fractional-order differential equation is also shown graphically and numerically. The suggested method yields straightforward results that closely match the precise solution. The proposed methodology is computationally efficient and produces more accurate findings than earlier numerical approaches. 
653 |a Accuracy 
653 |a Mathematical analysis 
653 |a Wavelet transforms 
653 |a Collocation methods 
653 |a Hermite polynomials 
653 |a Mathematical functions 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Fourier analysis 
653 |a Differential equations 
653 |a Mathematicians 
653 |a Viscoelasticity 
653 |a Numerical methods 
653 |a Boundary conditions 
653 |a Wavelet analysis 
653 |a Constants 
653 |a Efficiency 
700 1 |a Afridi, Muhammad Idrees  |u Research Center for Mathematical Modeling and Simulation, Hanjiang Normal University, Shiyan 442000, China 
700 1 |a Muhammad Samad Khan  |u Department of Mathematics, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan 
700 1 |a Amanullah  |u Department of Mathematics, University of Malakand, Chakdara 18800, Pakistan 
773 0 |t Mathematics  |g vol. 13, no. 3 (2025), p. 528 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165828901/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165828901/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165828901/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch