Enhanced Multilinear PCA for Efficient Image Analysis and Dimensionality Reduction: Unlocking the Potential of Complex Image Data

Na minha lista:
Detalhes bibliográficos
Publicado no:Mathematics vol. 13, no. 3 (2025), p. 531
Autor principal: Sun, Tianyu
Outros Autores: Lang, He, Fang, Xi, Xie, Liang
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3165831060
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13030531  |2 doi 
035 |a 3165831060 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Sun, Tianyu 
245 1 |a Enhanced Multilinear PCA for Efficient Image Analysis and Dimensionality Reduction: Unlocking the Potential of Complex Image Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents an Enhanced Multilinear Principal Component Analysis (EMPCA) algorithm, an improved variant of the traditional Multilinear Principal Component Analysis (MPCA) tailored for efficient dimensionality reduction in high-dimensional data, particularly in image analysis tasks. EMPCA integrates random singular value decomposition to reduce computational complexity while maintaining data integrity. Additionally, it innovatively combines the dimensionality reduction method with the Mask R-CNN algorithm, enhancing the accuracy of image segmentation. Leveraging tensors, EMPCA achieves dimensionality reduction that specifically benefits image classification, face recognition, and image segmentation. The experimental results demonstrate a 17.7% reduction in computation time compared to conventional methods, without compromising accuracy. In image classification and face recognition experiments, EMPCA significantly enhances classifier efficiency, achieving comparable or superior accuracy to algorithms such as Support Vector Machines (SVMs). Additionally, EMPCA preprocessing exploits latent information within tensor structures, leading to improved segmentation performance. The proposed EMPCA algorithm holds promise for reducing image analysis runtimes and advancing rapid image processing techniques. 
653 |a Accuracy 
653 |a Data analysis 
653 |a Face recognition 
653 |a Image analysis 
653 |a Principal components analysis 
653 |a Singular value decomposition 
653 |a Datasets 
653 |a Support vector machines 
653 |a Image segmentation 
653 |a Artificial neural networks 
653 |a Task complexity 
653 |a Tensors 
653 |a Decomposition 
653 |a Image classification 
653 |a Traffic flow 
653 |a Algorithms 
653 |a Methods 
653 |a Eigenvalues 
653 |a Image processing 
653 |a Dimensional analysis 
700 1 |a Lang, He 
700 1 |a Fang, Xi 
700 1 |a Xie, Liang 
773 0 |t Mathematics  |g vol. 13, no. 3 (2025), p. 531 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165831060/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165831060/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165831060/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch