A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 3 (2025), p. 364
Autor principal: Zhou, Gang
Altres autors: Zhang, Xianxia, Wang, Tangchen, Wang, Bing
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3165831680
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13030364  |2 doi 
035 |a 3165831680 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Zhou, Gang 
245 1 |a A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Modeling distributed parameter systems (DPSs) is challenging due to their strong nonlinearity and spatiotemporal coupling. In this study, a three-dimensional fuzzy modeling method combining genetic algorithm (GA)-based automatic clustering and hierarchical extreme learning machine (HELM) is proposed for DPS modeling. The method utilizes GA-based automatic clustering to learn the premise part of 3D fuzzy rules, while HELM is employed to learn spatial basis functions and construct a complete fuzzy rule base. This approach effectively captures the spatiotemporal coupling characteristics of the system and mitigates the information loss commonly observed in dimensionality reduction in traditional fuzzy modeling methods. Through experimental verification, the proposed method is successfully applied to a rapid thermal chemical vapor deposition system. The experimental results demonstrate that the method can accurately predict temperature distribution and maintain good robustness under noise and disturbances. 
653 |a Temperature distribution 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Genetic algorithms 
653 |a Noise prediction 
653 |a Modelling 
653 |a Clustering 
653 |a Temperature 
653 |a Fuzzy systems 
653 |a Sensors 
653 |a Chemical vapor deposition 
653 |a Basis functions 
653 |a Silicon wafers 
653 |a Distributed parameter systems 
653 |a Methods 
653 |a Batteries 
653 |a Machine learning 
653 |a Boundary conditions 
653 |a Radiation 
653 |a Coupling 
700 1 |a Zhang, Xianxia 
700 1 |a Wang, Tangchen 
700 1 |a Wang, Bing 
773 0 |t Mathematics  |g vol. 13, no. 3 (2025), p. 364 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165831680/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165831680/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165831680/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch