A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems
Guardat en:
| Publicat a: | Mathematics vol. 13, no. 3 (2025), p. 364 |
|---|---|
| Autor principal: | |
| Altres autors: | , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3165831680 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7390 | ||
| 024 | 7 | |a 10.3390/math13030364 |2 doi | |
| 035 | |a 3165831680 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231533 |2 nlm | ||
| 100 | 1 | |a Zhou, Gang | |
| 245 | 1 | |a A Spatiotemporal Fuzzy Modeling Approach Combining Automatic Clustering and Hierarchical Extreme Learning Machines for Distributed Parameter Systems | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Modeling distributed parameter systems (DPSs) is challenging due to their strong nonlinearity and spatiotemporal coupling. In this study, a three-dimensional fuzzy modeling method combining genetic algorithm (GA)-based automatic clustering and hierarchical extreme learning machine (HELM) is proposed for DPS modeling. The method utilizes GA-based automatic clustering to learn the premise part of 3D fuzzy rules, while HELM is employed to learn spatial basis functions and construct a complete fuzzy rule base. This approach effectively captures the spatiotemporal coupling characteristics of the system and mitigates the information loss commonly observed in dimensionality reduction in traditional fuzzy modeling methods. Through experimental verification, the proposed method is successfully applied to a rapid thermal chemical vapor deposition system. The experimental results demonstrate that the method can accurately predict temperature distribution and maintain good robustness under noise and disturbances. | |
| 653 | |a Temperature distribution | ||
| 653 | |a Accuracy | ||
| 653 | |a Partial differential equations | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Noise prediction | ||
| 653 | |a Modelling | ||
| 653 | |a Clustering | ||
| 653 | |a Temperature | ||
| 653 | |a Fuzzy systems | ||
| 653 | |a Sensors | ||
| 653 | |a Chemical vapor deposition | ||
| 653 | |a Basis functions | ||
| 653 | |a Silicon wafers | ||
| 653 | |a Distributed parameter systems | ||
| 653 | |a Methods | ||
| 653 | |a Batteries | ||
| 653 | |a Machine learning | ||
| 653 | |a Boundary conditions | ||
| 653 | |a Radiation | ||
| 653 | |a Coupling | ||
| 700 | 1 | |a Zhang, Xianxia | |
| 700 | 1 | |a Wang, Tangchen | |
| 700 | 1 | |a Wang, Bing | |
| 773 | 0 | |t Mathematics |g vol. 13, no. 3 (2025), p. 364 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3165831680/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3165831680/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3165831680/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch |