Optimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation

Guardat en:
Dades bibliogràfiques
Publicat a:Mathematics vol. 13, no. 3 (2025), p. 457
Autor principal: Cardona-Mesa, Ahmed Alejandro
Altres autors: Vásquez-Salazar, Rubén Darío, Diaz-Paz, Jean P, Sarmiento-Maldonado, Henry O, Gómez, Luis, Travieso-González, Carlos M
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3165831698
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13030457  |2 doi 
035 |a 3165831698 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Cardona-Mesa, Ahmed Alejandro  |u Faculty of Sciences and Humanities, Institución Universitaria Digital de Antioquia, 55th Av, 42-90, Medellín 050012, Colombia; <email>amhed.cardona@iudigital.edu.co</email> 
245 1 |a Optimization of Autoencoders for Speckle Reduction in SAR Imagery Through Variance Analysis and Quantitative Evaluation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Speckle reduction in Synthetic Aperture Radar (SAR) images is a crucial challenge for effective image analysis and interpretation in remote sensing applications. This study proposes a novel deep learning-based approach using autoencoder architectures for SAR image despeckling, incorporating analysis of variance (ANOVA) for hyperparameter optimization. The research addresses significant gaps in existing methods, such as the lack of rigorous model evaluation and the absence of systematic optimization techniques for deep learning models in SAR image processing. The methodology involves training 240 autoencoder models on real-world SAR data, with performance metrics evaluated using Mean Squared Error (MSE), Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), and Equivalent Number of Looks (ENL). By employing Pareto frontier optimization, the study identifies models that effectively balance denoising performance with the preservation of image fidelity. The results demonstrate substantial improvements in speckle reduction and image quality, validating the effectiveness of the proposed approach. This work advances the application of deep learning in SAR image denoising, offering a comprehensive framework for model evaluation and optimization. 
653 |a Image analysis 
653 |a Performance measurement 
653 |a Deep learning 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Interferometry 
653 |a Fourier transforms 
653 |a Signal to noise ratio 
653 |a Noise reduction 
653 |a Synthetic aperture radar 
653 |a Optimization 
653 |a Effectiveness 
653 |a Remote sensing 
653 |a Algorithms 
653 |a Image quality 
653 |a Variance analysis 
653 |a Radar imaging 
653 |a Image processing 
653 |a Statistical methods 
700 1 |a Vásquez-Salazar, Rubén Darío  |u Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín 050022, Colombia; <email>rdvasquez@elpoli.edu.co</email> (R.D.V.-S.); <email>jpdiaz@elpoli.edu.co</email> (J.P.D.-P.); <email>hosarmiento@elpoli.edu.co</email> (H.O.S.-M.) 
700 1 |a Diaz-Paz, Jean P  |u Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín 050022, Colombia; <email>rdvasquez@elpoli.edu.co</email> (R.D.V.-S.); <email>jpdiaz@elpoli.edu.co</email> (J.P.D.-P.); <email>hosarmiento@elpoli.edu.co</email> (H.O.S.-M.) 
700 1 |a Sarmiento-Maldonado, Henry O  |u Faculty of Engineering, Politécnico Colombiano Jaime Isaza Cadavid, 48th Av, 7-151, Medellín 050022, Colombia; <email>rdvasquez@elpoli.edu.co</email> (R.D.V.-S.); <email>jpdiaz@elpoli.edu.co</email> (J.P.D.-P.); <email>hosarmiento@elpoli.edu.co</email> (H.O.S.-M.) 
700 1 |a Gómez, Luis  |u Electronic Engineering and Automatic Control Department, IUCES, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; <email>luis.gomez@ulpgc.es</email> 
700 1 |a Travieso-González, Carlos M  |u Signals and Communications Department, IDeTIC, Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain 
773 0 |t Mathematics  |g vol. 13, no. 3 (2025), p. 457 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165831698/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165831698/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165831698/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch