Enhancing Zero-Shot Learning Through Kernelized Visual Prototypes and Similarity Learning

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Mathematics vol. 13, no. 3 (2025), p. 412
Kaituhi matua: Cheng, Kanglong
Ētahi atu kaituhi: Bowen, Fang
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3165832771
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13030412  |2 doi 
035 |a 3165832771 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Cheng, Kanglong 
245 1 |a Enhancing Zero-Shot Learning Through Kernelized Visual Prototypes and Similarity Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Zero-shot learning (ZSL) holds significant promise for scaling image classification to previously unseen classes by leveraging previously acquired knowledge. However, conventional ZSL methods face challenges such as domain-shift and hubness problems. To address these issues, we propose a novel kernelized similarity learning approach that reduces intraclass similarity while increasing interclass similarity. Specifically, we utilize kernelized ridge regression to learn visual prototypes for unseen classes in the semantic vectors. Furthermore, we introduce kernel polarization and autoencoder structures into the similarity function to enhance discriminative ability and mitigate the hubness and domain-shift problems. Extensive experiments on five benchmark datasets demonstrate that our method outperforms state-of-the-art ZSL and generalized zero-shot learning (GZSL) methods, highlighting its effectiveness in improving classification performance for unseen classes. 
653 |a Similarity 
653 |a Visual discrimination 
653 |a Research methodology 
653 |a Teaching methods 
653 |a Zero-shot learning 
653 |a Classification 
653 |a Maps 
653 |a Prototypes 
653 |a Image classification 
653 |a Image acquisition 
653 |a Similarity measures 
653 |a Distance learning 
653 |a Semantics 
700 1 |a Bowen, Fang 
773 0 |t Mathematics  |g vol. 13, no. 3 (2025), p. 412 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165832771/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165832771/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165832771/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch