Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 17, no. 3 (2025), p. 550
Autore principale: Dritsas, Elias
Altri autori: Trigka, Maria
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3165893839
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17030550  |2 doi 
035 |a 3165893839 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Dritsas, Elias 
245 1 |a Remote Sensing and Geospatial Analysis in the Big Data Era: A Survey 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The present survey examines the role of big data analytics in advancing remote sensing and geospatial analysis. The increasing volume and complexity of geospatial data are driving the adoption of machine learning (ML) and artificial intelligence (AI) techniques, such as convolutional neural networks (CNNs) and long short-term memory (LSTM) networks, to extract meaningful insights from large, diverse datasets. These AI methods enhance the accuracy and efficiency of spatial and temporal data analysis, benefiting applications in environmental monitoring, urban planning, and disaster management. Despite these advancements, challenges related to computational efficiency, data integration, and model transparency remain. This paper also discusses emerging trends and highlights the potential of hybrid approaches, cloud computing, and edge processing in overcoming these challenges. The integration of AI with geospatial data is poised to significantly improve our ability to monitor and manage Earth systems, supporting more informed and sustainable decision-making. 
653 |a Environmental monitoring 
653 |a Spatial analysis 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Urban planning 
653 |a Big Data 
653 |a Spatiotemporal data 
653 |a Artificial neural networks 
653 |a Remote sensing 
653 |a Disaster management 
653 |a Data processing 
653 |a Unmanned aerial vehicles 
653 |a Data analysis 
653 |a Data integration 
653 |a Long short-term memory 
653 |a Machine learning 
653 |a Emergency preparedness 
653 |a Internet of Things 
653 |a Case studies 
653 |a Environmental management 
653 |a Spatial data 
653 |a Infrastructure 
653 |a Cloud computing 
653 |a Neural networks 
653 |a Sensors 
653 |a Surveys 
653 |a Urban areas 
653 |a Satellites 
653 |a Decision making 
700 1 |a Trigka, Maria 
773 0 |t Remote Sensing  |g vol. 17, no. 3 (2025), p. 550 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165893839/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165893839/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165893839/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch