Enhancing Laser-Induced Breakdown Spectroscopy Quantification Through Minimum Redundancy and Maximum Relevance-Based Feature Selection

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 17, no. 3 (2025), p. 416
Hovedforfatter: Wang, Manping
Andre forfattere: Lu, Yang, Liu, Man, Cui, Fuhui, Gao, Rongke, Wang, Feifei, Chen, Xiaozhe, Yu, Liandong
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3165893906
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17030416  |2 doi 
035 |a 3165893906 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Manping 
245 1 |a Enhancing Laser-Induced Breakdown Spectroscopy Quantification Through Minimum Redundancy and Maximum Relevance-Based Feature Selection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Laser-induced breakdown spectroscopy (LIBS) is a rapid, non-contact analytical technique that is widely applied in various fields. However, the high dimensionality and information redundancy of LIBS spectral data present challenges for effective model development. This study aims to assess the effectiveness of the minimum redundancy and maximum relevance (mRMR) method for feature selection in LIBS spectral data and to explore its adaptability across different predictive modeling approaches. Using the ChemCam LIBS dataset, we constructed predictive models with four quantitative methods: random forest (RF), support vector regression (SVR), back propagation neural network (BPNN), and partial least squares regression (PLSR). We compared the performance of mRMR-based feature selection with that of full-spectrum data and three other feature selection methods: competitive adaptive re-weighted sampling (CARS), Regressional ReliefF (RReliefF), and neighborhood component analysis (NCA). Our results demonstrate that the mRMR method significantly reduces the number of selected features while improving model performance. This study validates the effectiveness of the mRMR algorithm for LIBS feature extraction and highlights the potential of feature selection techniques to enhance predictive accuracy. The findings provide a valuable strategy for feature selection in LIBS data analysis and offer significant implications for the practical application of LIBS in predicting elemental content in geological samples. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Datasets 
653 |a Adaptive sampling 
653 |a Regression analysis 
653 |a Back propagation networks 
653 |a Least squares method 
653 |a Data processing 
653 |a Feature selection 
653 |a Data analysis 
653 |a Prediction models 
653 |a Spectroscopy 
653 |a Adaptability 
653 |a Redundancy 
653 |a Neural networks 
653 |a Spectrum analysis 
653 |a Support vector machines 
653 |a Effectiveness 
653 |a Variables 
653 |a Quantitative analysis 
653 |a Algorithms 
653 |a Laser induced breakdown spectroscopy 
653 |a Methods 
653 |a Mars 
700 1 |a Lu, Yang 
700 1 |a Liu, Man 
700 1 |a Cui, Fuhui 
700 1 |a Gao, Rongke 
700 1 |a Wang, Feifei 
700 1 |a Chen, Xiaozhe 
700 1 |a Yu, Liandong 
773 0 |t Remote Sensing  |g vol. 17, no. 3 (2025), p. 416 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165893906/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165893906/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165893906/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch