Transformer-Driven Affective State Recognition from Wearable Physiological Data in Everyday Contexts

Gardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 3 (2025), p. 761
Autor Principal: Li, Fang
Outros autores: Zhang, Dan
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3165918707
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25030761  |2 doi 
035 |a 3165918707 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Li, Fang 
245 1 |a Transformer-Driven Affective State Recognition from Wearable Physiological Data in Everyday Contexts 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The rapid advancement in wearable physiological measurement technology in recent years has brought affective computing closer to everyday life scenarios. Recognizing affective states in daily contexts holds significant potential for applications in human–computer interaction and psychiatry. Addressing the challenge of long-term, multi-modal physiological data in everyday settings, this study introduces a Transformer-based algorithm for affective state recognition, designed to fully exploit the temporal characteristics of signals and the interrelationships between different modalities. Utilizing the DAPPER dataset, which comprises continuous 5-day wrist-worn recordings of heart rate, skin conductance, and tri-axial acceleration from 88 subjects, our Transformer-based model achieved an average binary classification accuracy of 71.5% for self-reported positive or negative affective state sampled at random moments during daily data collection, and 60.29% and 61.55% for the five-class classification based on valence and arousal scores. The results of this study demonstrate the feasibility of applying affective state recognition based on wearable multi-modal physiological signals in everyday contexts. 
653 |a Physiology 
653 |a Machine learning 
653 |a Affect (Psychology) 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Neural networks 
653 |a Classification 
653 |a Support vector machines 
653 |a Wearable computers 
653 |a Skin 
653 |a Natural language processing 
653 |a Electroencephalography 
653 |a Heart rate 
700 1 |a Zhang, Dan 
773 0 |t Sensors  |g vol. 25, no. 3 (2025), p. 761 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3165918707/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3165918707/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3165918707/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch