Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Atmospheric Measurement Techniques vol. 18, no. 3 (2025), p. 793
Päätekijä: Aldana, Miguel
Muut tekijät: Pulkkinen, Seppo, Annakaisa von Lerber, Kumjian, Matthew R, Moisseev, Dmitri
Julkaistu:
Copernicus GmbH
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3166111892
003 UK-CbPIL
022 |a 1867-1381 
022 |a 1867-8548 
024 7 |a 10.5194/amt-18-793-2025  |2 doi 
035 |a 3166111892 
045 2 |b d20250101  |b d20251231 
084 |a 123616  |2 nlm 
100 1 |a Aldana, Miguel  |u Space Research & Observation Technologies, Finnish Meteorological Institute, Helsinki, Finland; Institute for Atmospheric & Earth system Research, University of Helsinki, Helsinki, Finland 
245 1 |a Benchmarking KDP in rainfall: a quantitative assessment of estimation algorithms using C-band weather radar observations 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Accurate and precise <inline-formula>KDP</inline-formula> estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured <inline-formula>ΦDP</inline-formula>, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available <inline-formula>KDP</inline-formula> estimation methods implemented in open-source libraries such as Py-ART (the Python ARM (atmospheric radiation measurement) Radar Toolkit) and <inline-formula>ω</inline-formula>radlib and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates <inline-formula>KDP</inline-formula> to reflectivity and differential reflectivity in rain, providing a reference self-consistent <inline-formula>KDP</inline-formula> (<inline-formula>KDPsc</inline-formula>) for comparison. This approach allows for the construction of the reference <inline-formula>KDP</inline-formula> observations that can be used to assess the accuracy and robustness of the studied <inline-formula>KDP</inline-formula> estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations, where the reflectivity values ranged between 20 and 50 dBZ.Using the proposed evaluation framework, we were able to define optimized parameter settings for the methods that have user-configurable parameters. Most of these methods showed a significant reduction in the estimation errors after the optimization, with respect to the default settings. We have found significant differences in the performance of the studied methods, where the best-performing methods showed smaller normalized biases in the high reflectivity values (i.e., <inline-formula>≥</inline-formula> 40 dBZ) and overall smaller normalized root-mean-square errors across the range of reflectivity values. 
651 4 |a Vantaa Finland 
651 4 |a Finland 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Radar 
653 |a Radar data 
653 |a Estimates 
653 |a C band 
653 |a Atmospheric radiation 
653 |a Precipitation 
653 |a Meteorological radar 
653 |a Python 
653 |a Downward long wave radiation 
653 |a Quality control 
653 |a Noise reduction 
653 |a Weather 
653 |a Radiation measurement 
653 |a Accuracy 
653 |a Reflectance 
653 |a Classification 
653 |a Atmospheric radiation measurements 
653 |a Algorithms 
653 |a Methods 
653 |a Errors 
653 |a Rainfall 
653 |a Calibration 
653 |a Weather radar 
653 |a Precipitation estimation 
653 |a Data quality control 
653 |a Parameter estimation 
653 |a Variables 
653 |a Estimation errors 
653 |a Rain 
653 |a Environmental 
700 1 |a Pulkkinen, Seppo  |u Space Research &amp; Observation Technologies, Finnish Meteorological Institute, Helsinki, Finland 
700 1 |a Annakaisa von Lerber  |u Space Research &amp; Observation Technologies, Finnish Meteorological Institute, Helsinki, Finland 
700 1 |a Kumjian, Matthew R  |u Department of Meteorology &amp; Atmospheric Science, Pennsylvania State University, Penn State University Park, PA, USA 
700 1 |a Moisseev, Dmitri  |u Space Research &amp; Observation Technologies, Finnish Meteorological Institute, Helsinki, Finland; Institute for Atmospheric &amp; Earth system Research, University of Helsinki, Helsinki, Finland 
773 0 |t Atmospheric Measurement Techniques  |g vol. 18, no. 3 (2025), p. 793 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3166111892/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3166111892/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3166111892/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch