Multi-UAV-Assisted MEC Offloading-Optimization Method on Deep Reinforcement Learning

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal on Semantic Web and Information Systems vol. 21, no. 1 (2025), p. 1-32
Autor principal: Li, Zhihua
Otros Autores: Sun, Chao
Publicado:
IGI Global
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In multi-UAV-assisted mobile edge computing (MEC), insufficient consideration of collaborative computation in inter-UAV communication can significantly reduce computational service capabilities. For this problem, we present a multi-UAV-assisted MEC offloading optimization model that jointly optimizes task offloading decision, UAV resource allocation, UAV trajectories and establish collaborative computation through inter-UAV communication. First, to solve the multi-UAV-assisted MEC offloading optimization issue, we define a weighted utility function that balances delay and energy consumption. Then, to tackle the continuous nature of the computation-offloading problem and the coexistence of discrete and continuous variables, the PPO algorithm is enhanced by integrating an average reward objective function and a hybrid action generation offloading mechanism. Finally, we propose a multi-UAV-assisted MEC computing offloading optimization method to improve the utility function. Experiments show that the proposed method significantly enhances system utility.
ISSN:1552-6283
1552-6291
DOI:10.4018/IJSWIS.368839
Fuente:Engineering Database