Metaheuristic optimization algorithms for multi-area economic dispatch of power systems: part II—a comparative study

Guardado en:
Detalles Bibliográficos
Publicado en:The Artificial Intelligence Review vol. 58, no. 5 (May 2025), p. 132
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3166918607
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11125-w  |2 doi 
035 |a 3166918607 
045 2 |b d20250501  |b d20250531 
084 |a 68693  |2 nlm 
245 1 |a Metaheuristic optimization algorithms for multi-area economic dispatch of power systems: part II—a comparative study 
260 |b Springer Nature B.V.  |c May 2025 
513 |a Journal Article 
520 3 |a Multi-Area Economic Dispatch (MAED) plays an important role in the operation and planning of power systems. In Part I of this series, we have summarized various optimization techniques to the MAED problem comprehensively, showing clearly that metaheuristic optimization algorithms (MOAs) have become the dominant approach for solving this problem due to their ease of application and powerful search capability. Although many different types of MOAs have been proposed, there is no study on the comprehensive evaluation, comparison and recommendation of different MOAs for the MAED problem. In this part, we selected 32 algorithms including differential evolution, particle swarm optimization, teaching–learning based algorithm, JAYA algorithm, and their advanced variants to evaluate and compare their performance on the eleven reported MAED cases summarized in Part I of this series. The comparative study was comprehensively conducted based on various performance criteria including solution quality, convergence, robustness, computational efficiency, and statistical analysis. The comparisons reveal that the DE series is the most competitive overall. Nevertheless, there is no single algorithm that ranks in the top three on all cases. This study can provide a practical reference and applicability recommendation for the selection of MOAs for solving the MAED problem. 
653 |a Comparative studies 
653 |a Particle swarm optimization 
653 |a Evolutionary computation 
653 |a Performance evaluation 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Optimization algorithms 
653 |a Optimization techniques 
653 |a Power dispatch 
653 |a Evolutionary algorithms 
653 |a Heuristic methods 
653 |a Teaching 
653 |a Algorithms 
653 |a Quantitative analysis 
653 |a Robustness 
653 |a Comparative analysis 
653 |a Function words 
653 |a Convergence 
653 |a Variants 
653 |a Power 
653 |a Optimization 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 5 (May 2025), p. 132 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3166918607/abstract/embedded/WAQKWGCDE3OCLOOD?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3166918607/fulltextPDF/embedded/WAQKWGCDE3OCLOOD?source=fedsrch