Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:NPJ Computational Materials vol. 11, no. 1 (2025), p. 35
Almmustuhtton:
Nature Publishing Group
Fáttát:
Liŋkkat:Citation/Abstract
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3167234515
003 UK-CbPIL
022 |a 2057-3960 
024 7 |a 10.1038/s41524-025-01518-4  |2 doi 
035 |a 3167234515 
045 2 |b d20250101  |b d20251231 
084 |a 274866  |2 nlm 
245 1 |a Inverse design of photonic surfaces via multi fidelity ensemble framework and femtosecond laser processing 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces, trained on a dataset of 11,759 samples that we fabricate using high throughput femtosecond laser processing. The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization. The combined MF ensemble can generate multiple disparate sets of laser-processing parameters that can each produce the same target input spectral emissivity with high accuracy (root mean squared errors < 2%). SHapley Additive exPlanations analysis shows transparent model interpretability of the complex relationship between laser parameters and spectral emissivity. Finally, the MF ensemble is experimentally validated by fabricating and evaluating photonic surface designs that it generates for improved efficiency energy harvesting devices. Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications. 
653 |a Energy harvesting 
653 |a Laser processing 
653 |a Local optimization 
653 |a Photonics 
653 |a Machine learning 
653 |a Design optimization 
653 |a Spectral emissivity 
653 |a Emissivity 
653 |a Lasers 
653 |a Process parameters 
653 |a Inverse design 
653 |a Accuracy 
653 |a Fourier transforms 
653 |a Nanoparticles 
653 |a Optimization 
653 |a Optical properties 
653 |a Energy 
653 |a Ablation 
653 |a Mechanical engineering 
773 0 |t NPJ Computational Materials  |g vol. 11, no. 1 (2025), p. 35 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3167234515/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3167234515/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch