Multimodal text-emoji fusion using deep neural networks for text-based emotion detection in online communication

Guardado en:
書目詳細資料
發表在:Journal of Big Data vol. 12, no. 1 (Feb 2025), p. 32
出版:
Springer Nature B.V.
主題:
在線閱讀:Citation/Abstract
Full Text - PDF
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

MARC

LEADER 00000nab a2200000uu 4500
001 3167236012
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01062-4  |2 doi 
035 |a 3167236012 
045 2 |b d20250201  |b d20250228 
245 1 |a Multimodal text-emoji fusion using deep neural networks for text-based emotion detection in online communication 
260 |b Springer Nature B.V.  |c Feb 2025 
513 |a Journal Article 
520 3 |a The task of emotion detection in online social communication has been explored extensively. However, these studies solely focus on textual cues. Nowadays, emojis have become increasingly popular, serving as a visual means to express emotions and ideas succinctly. These emojis can be used supportively or contrastively, even sarcastically, adding complexity to emotional interpretation. Therefore, incorporating emoji analysis is crucial for accurately extracting insights from social media content to support decision-making. This paper aims to investigate to what extent the usage of emojis can contribute to the automated detection of emotions in text messages with a focus on online social communication. We propose an emoji-aware hybrid deep learning framework for multimodal emotion detection. The proposed framework leverages the feature-level fusion of textual and emoji representations, incorporating conventional and recurrent neural networks, to learn the fused modalities. The proposed approach was extensively evaluated on the GoEmotions dataset with different performance metrics. The experimental results indicate that emoji features can significantly improve emotion classification accuracy, highlighting their potential for enriching emotion understanding in online social communication. 
653 |a Recurrent neural networks 
653 |a Emotional icons 
653 |a Performance measurement 
653 |a Emotions 
653 |a Machine learning 
653 |a Emotion recognition 
653 |a Emojis 
653 |a Communication 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Big Data 
653 |a Computer mediated communication 
653 |a Social media 
653 |a Internet 
653 |a Text messaging 
653 |a Classification 
653 |a Deep learning 
653 |a Mass media 
653 |a Cues 
653 |a Decision making 
653 |a Multimodality 
653 |a Recurrent 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Feb 2025), p. 32 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3167236012/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3167236012/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch