The "Podcast" ECoG dataset for modeling neural activity during natural language comprehension

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv (Feb 16, 2025)
1. Verfasser: Zada, Zaid
Weitere Verfasser: Nastase, Samuel A, Aubrey, Bobbi, Jalon, Itamar, Michelmann, Sebastian, Wang, Haocheng, Hasenfratz, Liat, Doyle, Werner, Friedman, Daniel, Dugan, Patricia, Melloni, Lucia, Devore, Sasha, Flinker, Adeen, Devinsky, Orrin, Goldstein, Ariel, Hasson, Uri
Veröffentlicht:
Cold Spring Harbor Laboratory Press
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3167424344
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.14.638352  |2 doi 
035 |a 3167424344 
045 0 |b d20250216 
100 1 |a Zada, Zaid 
245 1 |a The "Podcast" ECoG dataset for modeling neural activity during natural language comprehension 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 16, 2025 
513 |a Working Paper 
520 3 |a Naturalistic electrocorticography (ECoG) data are a rare but essential resource for studying the brain's linguistic capabilities. ECoG offers a high temporal resolution suitable for investigating processes at multiple temporal timescales and frequency bands. It also provides broad spatial coverage, often along critical language areas. Here, we share a dataset of nine ECoG participants with 1,330 electrodes listening to a 30-minute audio podcast. The richness of this naturalistic stimulus can be used for various research endeavors, from auditory perception to semantic integration. In addition to the neural data, we extract linguistic features of the stimulus ranging from phonetic information to large language model word embeddings. We use these linguistic features in encoding models that relate stimulus properties to neural activity. Finally, we provide detailed tutorials for preprocessing raw data, extracting stimulus features, and running encoding analyses that can serve as a pedagogical resource or a springboard for new research.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://openneuro.org/datasets/ds005574* https://hassonlab.github.io/podcast-ecog-tutorials/html/index.html 
653 |a Linguistics 
653 |a Information processing 
653 |a Frequency dependence 
653 |a Language 
653 |a Neural coding 
653 |a Auditory perception 
700 1 |a Nastase, Samuel A 
700 1 |a Aubrey, Bobbi 
700 1 |a Jalon, Itamar 
700 1 |a Michelmann, Sebastian 
700 1 |a Wang, Haocheng 
700 1 |a Hasenfratz, Liat 
700 1 |a Doyle, Werner 
700 1 |a Friedman, Daniel 
700 1 |a Dugan, Patricia 
700 1 |a Melloni, Lucia 
700 1 |a Devore, Sasha 
700 1 |a Flinker, Adeen 
700 1 |a Devinsky, Orrin 
700 1 |a Goldstein, Ariel 
700 1 |a Hasson, Uri 
773 0 |t bioRxiv  |g (Feb 16, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3167424344/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3167424344/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.14.638352v1