The "Podcast" ECoG dataset for modeling neural activity during natural language comprehension
Gespeichert in:
| Veröffentlicht in: | bioRxiv (Feb 16, 2025) |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , , , , , , , , |
| Veröffentlicht: |
Cold Spring Harbor Laboratory Press
|
| Schlagworte: | |
| Online-Zugang: | Citation/Abstract Full Text - PDF Full text outside of ProQuest |
| Tags: |
Keine Tags, Fügen Sie das erste Tag hinzu!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3167424344 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2692-8205 | ||
| 024 | 7 | |a 10.1101/2025.02.14.638352 |2 doi | |
| 035 | |a 3167424344 | ||
| 045 | 0 | |b d20250216 | |
| 100 | 1 | |a Zada, Zaid | |
| 245 | 1 | |a The "Podcast" ECoG dataset for modeling neural activity during natural language comprehension | |
| 260 | |b Cold Spring Harbor Laboratory Press |c Feb 16, 2025 | ||
| 513 | |a Working Paper | ||
| 520 | 3 | |a Naturalistic electrocorticography (ECoG) data are a rare but essential resource for studying the brain's linguistic capabilities. ECoG offers a high temporal resolution suitable for investigating processes at multiple temporal timescales and frequency bands. It also provides broad spatial coverage, often along critical language areas. Here, we share a dataset of nine ECoG participants with 1,330 electrodes listening to a 30-minute audio podcast. The richness of this naturalistic stimulus can be used for various research endeavors, from auditory perception to semantic integration. In addition to the neural data, we extract linguistic features of the stimulus ranging from phonetic information to large language model word embeddings. We use these linguistic features in encoding models that relate stimulus properties to neural activity. Finally, we provide detailed tutorials for preprocessing raw data, extracting stimulus features, and running encoding analyses that can serve as a pedagogical resource or a springboard for new research.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://openneuro.org/datasets/ds005574* https://hassonlab.github.io/podcast-ecog-tutorials/html/index.html | |
| 653 | |a Linguistics | ||
| 653 | |a Information processing | ||
| 653 | |a Frequency dependence | ||
| 653 | |a Language | ||
| 653 | |a Neural coding | ||
| 653 | |a Auditory perception | ||
| 700 | 1 | |a Nastase, Samuel A | |
| 700 | 1 | |a Aubrey, Bobbi | |
| 700 | 1 | |a Jalon, Itamar | |
| 700 | 1 | |a Michelmann, Sebastian | |
| 700 | 1 | |a Wang, Haocheng | |
| 700 | 1 | |a Hasenfratz, Liat | |
| 700 | 1 | |a Doyle, Werner | |
| 700 | 1 | |a Friedman, Daniel | |
| 700 | 1 | |a Dugan, Patricia | |
| 700 | 1 | |a Melloni, Lucia | |
| 700 | 1 | |a Devore, Sasha | |
| 700 | 1 | |a Flinker, Adeen | |
| 700 | 1 | |a Devinsky, Orrin | |
| 700 | 1 | |a Goldstein, Ariel | |
| 700 | 1 | |a Hasson, Uri | |
| 773 | 0 | |t bioRxiv |g (Feb 16, 2025) | |
| 786 | 0 | |d ProQuest |t Biological Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3167424344/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3167424344/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full text outside of ProQuest |u https://www.biorxiv.org/content/10.1101/2025.02.14.638352v1 |