Low-complexity detection for MIMO visible light communication system using generalized spatial modulation

Guardado en:
Detalles Bibliográficos
Publicado en:EURASIP Journal on Advances in Signal Processing vol. 2025, no. 1 (Dec 2025), p. 5
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3167826461
003 UK-CbPIL
022 |a 1687-6172 
022 |a 1687-6180 
024 7 |a 10.1186/s13634-025-01205-y  |2 doi 
035 |a 3167826461 
045 2 |b d20251201  |b d20251231 
084 |a 130316  |2 nlm 
245 1 |a Low-complexity detection for MIMO visible light communication system using generalized spatial modulation 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In this paper, the detection algorithms of two generalized spatial modulation (GSM) schemes in a multiple-input multiple-output (MIMO) visible light communication (VLC) system are developed and analyzed. The considered optical GSM schemes are GSM with Transmit Diversity (GSM-TD) and GSM with Multi-Stream (GSM-MS). By allowing each activated LED to transmit independent temporal symbols simultaneously, GSM-MS benefits from higher bits per channel use (bpcu) than the GSM-TD scheme. Existing maximum likelihood (ML) detection algorithm is computationally prohibitive; hence, we develop a two-stage (identification followed by detection) receiver that decodes the spatial and temporal symbols in a sequential manner. In the first stage, we propose two algorithms, namely subspace tracking and spatial matched filtering (SMF), to identify the indices of activated LEDs, while in the second stage, effective matched filter (EMF) and decorrelating detector are employed to extract temporal symbols for GSM-TD and GSM-MS scheme, respectively. The performance assessment, including the computation load, correct identification probability and the average symbol error rate (SER), is comprehensively evaluated by computation simulation. It is shown that the complexity of the proposed two detection algorithms is extensively reduced compared with the ML algorithm. It is also demonstrated that ML detector offers the best SER performance; nevertheless, SER of the proposed algorithms approaches ML detector in high signal-to-noise ratio (SNR) or large receiver array size scenarios. 
653 |a MIMO communication 
653 |a Computation 
653 |a Performance evaluation 
653 |a Performance assessment 
653 |a Maximum likelihood decoding 
653 |a Modulation 
653 |a Error correction 
653 |a Matched filters 
653 |a Sensors 
653 |a Communications systems 
653 |a Algorithms 
653 |a Symbols 
653 |a Complexity 
653 |a Optical communication 
653 |a Error detection 
653 |a Signal to noise ratio 
653 |a Simulation 
773 0 |t EURASIP Journal on Advances in Signal Processing  |g vol. 2025, no. 1 (Dec 2025), p. 5 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3167826461/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3167826461/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch