Unveiling conserved HIV-1 open reading frames encoding T cell antigens using ribosome profiling

Guardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 1707
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The development of ribosomal profiling (Riboseq) revealed the immense coding capacity of human and viral genomes. Here, we used Riboseq to delineate the translatome of HIV-1 in infected CD4+ T cells. In addition to canonical viral protein coding sequences (CDSs), we identify 98 alternative open reading frames (ARFs), corresponding to small Open Reading Frames (sORFs) that are distributed across the HIV genome including the UTR regions. Using a database of HIV genomes, we observe that most ARF amino-acid sequences are likely conserved among clade B and C of HIV-1, with 8 ARF-encoded amino-acid sequences being more conserved than the overlapping CDSs. Using T cell-based assays and mass spectrometry-based immunopeptidomics, we demonstrate that ARFs encode viral polypeptides. In the blood of people living with HIV, ARF-derived peptides elicit potent poly-functional T cell responses mediated by both CD4+ and CD8+ T cells. Our discovery expands the list of conserved viral polypeptides that are targets for vaccination strategies and might reveal the existence of viral microproteins or pseudogenes.Here, using ribosomal profiling, the authors characterize the translatome of HIV-1 revealing tens of alternative open reading frames (ARF) that encode conserved viral antigens and show that ARF-derived peptides elicit potent HIV-specific poly-functional immune responses mediated by both CD4+ and CD8+ T cells.
ISSN:2041-1723
DOI:10.1038/s41467-025-56773-2
Fuente:Health & Medical Collection