BabyPy: a brain-age model for infancy, childhood and adolescence

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Feb 19, 2025)
Autor principal: Biondo, Francesca
Altres autors: O'muircheartaigh, Jonathan, Richard Ai Bethlehem, Seidlitz, Jakob, Alexander-Bloch, Aaron, Elison, Jed, D'sa, Viren, Deoni, Sean Cl, Bruchhage, Muriel Mk, Cole, James H
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3168491281
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.02.05.636598  |2 doi 
035 |a 3168491281 
045 0 |b d20250219 
100 1 |a Biondo, Francesca 
245 1 |a BabyPy: a brain-age model for infancy, childhood and adolescence 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 19, 2025 
513 |a Working Paper 
520 3 |a Intro: Brain-age models quantify biological ageing by predicting a person's age from neuroimaging data. In early life, brain-age can reflect underlying biological maturity (or immaturity), providing a candidate predictor of typical neurodevelopment versus deviation. Although widely used in adult research, the use of brain-age in early development has been limited due to data availability, heterogeneity and restricted model accessibility. Here, we introduce BabyPy, a shareable brain-age model for individuals aged 0-17 years that achieves accurate predictions despite substantial variability in site, scanner, and preprocessing pipelines. Methods: We trained BabyPy on 4,021 structural T1-weighted MRI scans from multi-site datasets (ages 0-17 years). An external test set of 1,143 scans (ages 0-16 years) was used for validation. Coarse neuroimaging features - grey matter volume (GMV), white matter volume (WMV), and subcortical grey matter volume (sGMV) - along with sex, were the model inputs. An ensemble machine learning approach combined Extra Trees Regression, Support Vector Machine, and Multilayer Perceptron base models. Performance was evaluated via 5-fold cross-validation and external testing. Results: The ensemble meta-model explained 80% of the variance in age (training set, MAE = 1.55 years) and 46% of the variance in the external test set (MAE = 1.72 years). Conclusion: BabyPy is a shareable framework that estimates brainage across a broad developmental range, removing the need for separate age-specific models. Despite limitations due to data heterogeneity, it demonstrates robust predictive performance and supports cross-study comparisons. Future improvements in data harmonisation will further enhance the utility of generic brain-age models like BabyPy.Competing Interest StatementAll authors declare no competing interests except: JS, RAIB and AA-B hold shares in and JS and RAIB are directors of Centile Bioscience; JHC is shareholder/advisor for BrainKey and Claritas HealthTech.Footnotes* Minor adjustments with text and figures. Addition of a graphical abstract. 
653 |a Neuroimaging 
653 |a Substantia grisea 
653 |a Medical imaging 
653 |a Age 
653 |a Children 
653 |a Regression analysis 
653 |a Aging 
653 |a Substantia alba 
700 1 |a O'muircheartaigh, Jonathan 
700 1 |a Richard Ai Bethlehem 
700 1 |a Seidlitz, Jakob 
700 1 |a Alexander-Bloch, Aaron 
700 1 |a Elison, Jed 
700 1 |a D'sa, Viren 
700 1 |a Deoni, Sean Cl 
700 1 |a Bruchhage, Muriel Mk 
700 1 |a Cole, James H 
773 0 |t bioRxiv  |g (Feb 19, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168491281/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.02.05.636598v2