Framework for detecting, assessing and mitigating mental health issue in the context of online social networks: a viewpoint paper

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Health Governance vol. 30, no. 1 (2025), p. 118-129
Hlavní autor: Roggendorf, Polina
Další autoři: Volkov, Andrei
Vydáno:
Emerald Group Publishing Limited
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3168491872
003 UK-CbPIL
022 |a 2059-4631 
022 |a 2059-464X 
022 |a 1361-5874 
022 |a 1477-7274 
022 |a 1758-6038 
022 |a 1466-4100 
024 7 |a 10.1108/IJHG-11-2024-0140  |2 doi 
035 |a 3168491872 
045 2 |b d20250101  |b d20250331 
084 |a 46105  |2 nlm 
100 1 |a Roggendorf, Polina  |u Independent Consultant, Berlin, Germany 
245 1 |a Framework for detecting, assessing and mitigating mental health issue in the context of online social networks: a viewpoint paper 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Editorial 
520 3 |a PurposeThe development and presentation of a framework that integrates modern methods for detecting, assessing and mitigating mental health issues in the context of dynamic and adverse changes in social networks.Design/methodology/approachThis viewpoint is based on a literature review of current advancements in the field. The use of causal discovery and causal inference methods forms the foundation for applying all the techniques included in the framework (machine learning, deep learning, explainable AI as well as large language models and generative AI). Additionally, an analysis of network effects and their influence on users’ emotional states is conducted.FindingsThe synergy of all methods used in the framework, combined with causal analysis, opens new horizons in predicting and diagnosing mental health disorders. The proposed framework demonstrates its applicability in providing additional analytics for the studied subjects (individual traits and factors that worsen mental health). It also proves its ability to identify hidden factors and processes.Originality/valueThe proposed framework offers a novel perspective on addressing mental health issues in the context of rapidly evolving digital platforms. Its flexibility allows for the adaptation of tools and methods to various scenarios and user groups. Its application can contribute to the development of more accurate algorithms that account for the impact of negative (including hidden) external factors affecting users. Furthermore, it can assist in the diagnostic process. 
610 4 |a World Health Organization 
651 4 |a United States--US 
653 |a Mental health 
653 |a Social networks 
653 |a Context 
653 |a Mental disorders 
653 |a Generative artificial intelligence 
653 |a Emotional states 
653 |a Machine learning 
653 |a Network analysis 
653 |a Explainable artificial intelligence 
653 |a Literature reviews 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a User groups 
653 |a Frame analysis 
653 |a Algorithms 
653 |a Mental depression 
653 |a Anxiety disorders 
653 |a Deep learning 
653 |a Reproducibility 
653 |a Causality 
653 |a Disorders 
653 |a Language modeling 
653 |a Inference 
653 |a Social 
700 1 |a Volkov, Andrei  |u RBC Group LLP, Almaty, Kazakhstan 
773 0 |t International Journal of Health Governance  |g vol. 30, no. 1 (2025), p. 118-129 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168491872/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3168491872/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168491872/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch