TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:PLoS One vol. 20, no. 2 (Feb 2025), p. e0316900
Κύριος συγγραφέας: Wang, Huiqing
Άλλοι συγγραφείς: Wang, Huajun, Wu, Linfen
Έκδοση:
Public Library of Science
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3168697474
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0316900  |2 doi 
035 |a 3168697474 
045 2 |b d20250201  |b d20250228 
084 |a 174835  |2 nlm 
100 1 |a Wang, Huiqing 
245 1 |a TGF-Net: Transformer and gist CNN fusion network for multi-modal remote sensing image classification 
260 |b Public Library of Science  |c Feb 2025 
513 |a Journal Article 
520 3 |a In the field of earth sciences and remote exploration, the classification and identification of surface materials on earth have been a significant research area that poses considerable challenges in recent times. Although deep learning technology has achieved certain results in remote sensing image classification, it still has certain challenges for multi-modality remote sensing data classification. In this paper, we propose a fusion network based on transformer and gist convolutional neural network (CNN), namely TGF-Net. To minimize the duplication of information in multimodal data, the TGF-Net network incorporates a feature reconstruction module (FRM) that employs matrix factorization and self-attention mechanism for decomposing and evaluating the similarity of multimodal features. This enables the extraction of distinct as well as common features. Meanwhile, the transformer-based spectral feature extraction module (TSFEM) was designed by combining the different characteristics of remote sensing images and considering the problem of orderliness of the sequence between hyperspectral image (HSI) channels. In order to address the issue of representing the relative positions of spatial targets in synthetic aperture radar (SAR) images, we proposed a spatial feature extraction module called gist-based spatial feature extraction module (GSFEM). To assess the efficacy and superiority of the proposed TGF-Net, we performed experiments on two datasets comprising HSI and SAR data. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Datasets 
653 |a Collaboration 
653 |a Deep learning 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Remote sensing 
653 |a Classification 
653 |a Modules 
653 |a Radar imaging 
653 |a Machine learning 
653 |a Synthetic aperture radar 
653 |a Image reconstruction 
653 |a Earth sciences 
653 |a Image classification 
653 |a Integrated approach 
653 |a Methods 
653 |a Morphology 
653 |a Hyperspectral imaging 
653 |a Data visualization 
653 |a Environmental 
700 1 |a Wang, Huajun 
700 1 |a Wu, Linfen 
773 0 |t PLoS One  |g vol. 20, no. 2 (Feb 2025), p. e0316900 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168697474/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3168697474/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168697474/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch