A Comparative Study of Predictive Analysis Using Machine Learning Techniques: Performance Evaluation of Manual and AutoML Algorithms

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Päätekijä: PDF
Julkaistu:
Science and Information (SAI) Organization Limited
Aiheet:
Linkit:Citation/Abstract
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740261
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160102  |2 doi 
035 |a 3168740261 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a A Comparative Study of Predictive Analysis Using Machine Learning Techniques: Performance Evaluation of Manual and AutoML Algorithms 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a In this study, we have compared manual machine learning with automated machine learning (AutoML) to see which performs better in predictive analysis. Using data from past football matches, we tested a range of algorithms to forecast game outcomes. By exploring the data, we discovered patterns and team correlations, then cleaned and prepped the data to ensure the models had the best possible inputs. Our findings show that AutoML, especially when using logistic regression can outperform manual methods in prediction accuracy. The big advantage of AutoML is that it automates the tricky parts, like data cleaning, feature selection, and tuning model parameters, saving time and effort compared to manual approaches, which require more expertise to achieve similar results. This research highlights how AutoML can make predictive analysis easier and more accurate, providing useful insights for many fields. Future work could explore using different data types and applying these techniques to other areas to show how adaptable and powerful machine learning can be. 
653 |a Comparative studies 
653 |a Data analysis 
653 |a Machine learning 
653 |a Algorithms 
653 |a Performance evaluation 
653 |a Automation 
653 |a Cleaning 
653 |a Predictions 
653 |a Software 
653 |a Accuracy 
653 |a Predictive analytics 
653 |a Datasets 
653 |a Computer science 
653 |a Regression analysis 
653 |a Success 
653 |a Discriminant analysis 
653 |a Feature selection 
653 |a Business metrics 
653 |a Decision making 
653 |a Tournaments & championships 
653 |a Engineering 
653 |a Literature reviews 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740261/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740261/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch