A Novel Hybrid Algorithm Based on Butterfly and Flower Pollination Algorithms for Scheduling Independent Tasks on Cloud Computing

Shranjeno v:
Bibliografske podrobnosti
izdano v:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Glavni avtor: PDF
Izdano:
Science and Information (SAI) Organization Limited
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740277
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160181  |2 doi 
035 |a 3168740277 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a A Novel Hybrid Algorithm Based on Butterfly and Flower Pollination Algorithms for Scheduling Independent Tasks on Cloud Computing 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Cloud computing is an Internet-based computing paradigm where virtual servers or workstations are offered as platforms, software, infrastructure, and resources. Task scheduling is considered one of the major NP-hard problems in cloud environments, posing several challenges to efficient resource allocation. Many metaheuristic algorithms have been extensively employed to address these task-scheduling problems as discrete optimization problems and have given rise to some proposals. However, these algorithms have inherent limitations due to local optima and convergence to poor results. This paper suggests a hybrid strategy for organizing independent tasks in heterogeneous cloud resources by incorporating the Butterfly Optimization Algorithm (BOA) and Flower Pollination Algorithm (FPA). Although BOA suffers from local optima and loss of diversity, which may cause an early convergence of the swarm, our hybrid approach outperforms such weaknesses by exploiting a mutualism-based mechanism. Indeed, the proposed hybrid algorithm outperforms existing methods while considering different task quantities with better scalability. Experiments are conducted within the CloudSim simulation framework with many task instances. Statistical analysis is performed to test the significance of the obtained results, which confirms that the suggested algorithm is effective at solving cloud-based task scheduling issues. The study findings indicate that the hybrid metaheuristic algorithm could be a promising approach to improving resource utilization and optimizing cloud task scheduling. 
653 |a Task scheduling 
653 |a Convergence 
653 |a Cloud computing 
653 |a Optimization 
653 |a Resource allocation 
653 |a Resource scheduling 
653 |a Statistical methods 
653 |a Algorithms 
653 |a Resource utilization 
653 |a Statistical analysis 
653 |a Heuristic methods 
653 |a Load 
653 |a Internet 
653 |a Computer science 
653 |a Exploitation 
653 |a Optimization techniques 
653 |a Software services 
653 |a Mutualism 
653 |a Workloads 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Scheduling 
653 |a Infrastructure 
653 |a Genetic algorithms 
653 |a Optimization algorithms 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740277/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740277/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch