Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Հիմնական հեղինակ: PDF
Հրապարակվել է:
Science and Information (SAI) Organization Limited
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740306
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160164  |2 doi 
035 |a 3168740306 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Nanomaterials, owing to their distinctive features, are crucial across numerous scientific domains, especially in materials science and nanotechnology. Precise segmentation of Scanning Electron Microscope (SEM) images is essential for evaluating attributes such as nanoparticle dimensions, morphology, and distribution. Conventional image segmentation techniques frequently prove insufficient for managing the intricate textures of SEM images, resulting in a laborious and imprecise process. In this research, a modified U-Net architecture is presented to tackle this challenge, utilizing a ResNet50 backbone pre-trained on ImageNet. This model utilizes the robust feature extraction abilities of ResNet50 alongside the effective segmentation performance of U-Net, hence improving both accuracy and computational efficiency in TiO2 nanoparticle segmentation. The suggested model was assessed using performance metrics including accuracy, precision, recall, IoU, and Dice Coefficient. The results indicated a high segmentation accuracy, demonstrated by a Dice score of 0.946 and an IoU of 0.897, with little variability reflected in standard deviations of 0.002071 and 0.003696, respectively, over 200 epochs. The comparison with existing methods demonstrates that the proposed model surpasses previous approaches by attaining enhanced segmentation accuracy. The modified U-Net design serves as an excellent technique for accurate nanoparticle segmentation in SEM images, providing substantial enhancements compared to traditional approaches. This progress indicates the model's potential for wider applications in nanomaterial research and characterization, where precise and efficient segmentation is essential for analysis. 
651 4 |a Tamil Nadu India 
651 4 |a India 
653 |a Accuracy 
653 |a Performance measurement 
653 |a Nanoparticles 
653 |a Machine learning 
653 |a Image segmentation 
653 |a Scanning electron microscopy 
653 |a Nanomaterials 
653 |a Titanium dioxide 
653 |a Higher education 
653 |a Datasets 
653 |a Deep learning 
653 |a Computer science 
653 |a Automation 
653 |a Nanotechnology 
653 |a Time series 
653 |a Materials science 
653 |a Neural networks 
653 |a Microscopy 
653 |a Literature reviews 
653 |a Morphology 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740306/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740306/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch