Enhanced Task Scheduling Algorithm Using Harris Hawks Optimization Algorithm for Cloud Computing

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Үндсэн зохиолч: PDF
Хэвлэсэн:
Science and Information (SAI) Organization Limited
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740308
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160189  |2 doi 
035 |a 3168740308 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Enhanced Task Scheduling Algorithm Using Harris Hawks Optimization Algorithm for Cloud Computing 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Amongst the most transformational technologies nowadays, cloud computing can provide resources such as CPU, memory, and storage over secure internet connections. Due to its flexibility and resource availability with guaranteed QoS, cloud computing allows comprehensive business and research adoptions. Despite the rapid development, resource management remains one of the significant challenges, especially handling task scheduling efficiently in this environment. Task scheduling strategically assigns tasks to available resources so that Quality of Service (QoS) metrics are effectively related to response time and throughput. This paper proposes an Enhanced Harris Hawks Optimization (EHHO) algorithm for scheduling cloud tasks to mitigate the common limitations found in existing algorithms. EHHO integrates a dynamic random walk strategy, enhancing exploration capabilities to avoid premature convergence and significantly improving scalability and resource allocation efficiency. Simulation outcomes reveal that EHHO minimizes makespan by up to 75%, memory usage by up to 60%, execution time by up to 39%, and cost by up to 66% compared to state-of-the-art algorithms. These benefits demonstrate that EHHO can optimize resource allocation while being highly scalable and reliable. Consistent performance over various stacks such as Kafka, Spark, Flink, and Storm further evidences the superiority of EHHO in handling complex scheduling challenges in dynamic cloud computing environments. 
653 |a Task scheduling 
653 |a Computer memory 
653 |a Cloud computing 
653 |a Random walk 
653 |a Optimization 
653 |a Resource allocation 
653 |a Resource scheduling 
653 |a Algorithms 
653 |a Availability 
653 |a Resource management 
653 |a Response time (computers) 
653 |a Scheduling 
653 |a Simulation 
653 |a Response time 
653 |a Computer science 
653 |a Communication 
653 |a Software services 
653 |a Quality of service 
653 |a Optimization algorithms 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Efficiency 
653 |a Business metrics 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740308/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740308/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch