Enhancing COVID-19 Detection in X-Ray Images Through Deep Learning Models with Different Image Preprocessing Techniques

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Autor principal: PDF
Publicat:
Science and Information (SAI) Organization Limited
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740314
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160161  |2 doi 
035 |a 3168740314 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Enhancing COVID-19 Detection in X-Ray Images Through Deep Learning Models with Different Image Preprocessing Techniques 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a The identification of COVID-19 using chest X-ray (CXR) images plays a critical role in managing the pandemic by providing a rapid, non-invasive, and accessible diagnostic tool. This study evaluates the impact of different image preprocessing techniques on the performance of deep learning models for COVID-19 classification based on COVID-19 Radiography Database, which includes 10,192 normal CXR images, 6012 lung opacity (non-COVID lung infection) images, and 1345 viral pneumonia images. Along with the images, corresponding lung masks are also included to aid in the segmentation and analysis of lung regions. Specifically, three convolutional neural network (CNN) models were developed, each using a distinct preprocessing method: Contrast Limited Adaptive Histogram Equalization (CLAHE), traditional histogram equalization, and no preprocessing. The results revealed that while the CLAHE-enhanced model achieved the highest training accuracy (93.26%) and demonstrated superior stability during training, it showed lower performance in the validation phase, with validation accuracy of 91.31%. In contrast, the model with no preprocessing, which exhibited slightly lower training accuracy (92.98%), outperformed the CLAHE model during validation, achieving the highest validation accuracy of 91.50% and the lowest validation loss. The histogram equalization model demonstrated performance similar to that of CLAHE but with slightly higher validation loss and accuracy compared to the unprocessed model. These findings suggest that while CLAHE excels in enhancing image details during training, it may lead to overfitting and reduced generalization ability. In contrast, the model without preprocessing showed the best generalization and stability, indicating that preprocessing techniques should be chosen carefully to balance feature enhancement with the need for generalization in real-world applications. This study underscores the importance of selecting appropriate image preprocessing techniques to enhance deep learning models' performance in medical image classification, particularly for COVID-19 detection. Histogram Equalization The results contribute to ongoing efforts to optimize diagnostic tools using AI and image processing. 
653 |a Accuracy 
653 |a Preprocessing 
653 |a Equalization 
653 |a Performance evaluation 
653 |a Lungs 
653 |a Image segmentation 
653 |a Histograms 
653 |a Artificial neural networks 
653 |a Medical imaging 
653 |a Image classification 
653 |a Stability 
653 |a Deep learning 
653 |a Machine learning 
653 |a Image processing 
653 |a Diagnostic software 
653 |a Infections 
653 |a Tomography 
653 |a COVID-19 vaccines 
653 |a Datasets 
653 |a Computer science 
653 |a Immunization 
653 |a Patients 
653 |a Artificial intelligence 
653 |a Pandemics 
653 |a Neural networks 
653 |a X-rays 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740314/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740314/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch