Comparative Analysis of Feature Selection Based on Metaheuristic Methods for Human Heart Sounds Classification Using PCG Signal

保存先:
書誌詳細
出版年:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
第一著者: PDF
出版事項:
Science and Information (SAI) Organization Limited
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740432
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160175  |2 doi 
035 |a 3168740432 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Comparative Analysis of Feature Selection Based on Metaheuristic Methods for Human Heart Sounds Classification Using PCG Signal 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Cardiovascular disease is a critical threat to human health, as most death cases are due to heart disease. Although several doctors employ stethoscopes to auscultate heart sounds to detect abnormalities, the accuracy of the approach is considerably dependent upon the experience and skills of the physician. Consequently, optimal methods are required to analyse and classify heart sounds with Phonocardiogram (PCG) signal-based machine learning methods. The current study formulated a binary classification model by subjecting PCG signals to hyper-filtering with low-pass and cosine filters. Subsequently, numerous features are extracted with the Wavelet Scattering Transform (WST) method. During the feature selection stage, several metaheuristic methods, including Harris Hawks Optimisation (HHO), Dragonfly Algorithm (DA), Grey Wolf Optimiser (GWO), Salp Swarm Algorithm (SSA), and Whale Optimisation Algorithm (WOA), are employed to compare the attributes separately and determine the ideal characteristics for improved classification accuracy. Finally, the selected features were applied as input for the Bidirectional Long Short-Term Memory (Bi-LSTM) algorithm, simplifying the classification process for distinguishing normal and abnormal heart sounds. The present study assessed three PCG datasets: PhysioNet 2016, Yaseen Khan 2018, and PhysioNet 2022, documenting 94.85%, 100%, and 66.87% accuracy rates with 127-SSA, 168-HHO, and 163-HHO, respectively. Based on the results of the PhysioNet 2016 and 2022 datasets, the proposed method with hyperparameters demonstrated superior performance to those with default parameters in categorising normal and abnormal heart sounds appropriately. 
653 |a Feature extraction 
653 |a Abnormalities 
653 |a Datasets 
653 |a Stethoscopes 
653 |a Classification 
653 |a Optimization 
653 |a Algorithms 
653 |a Medical personnel 
653 |a Machine learning 
653 |a Low pass filters 
653 |a Heart diseases 
653 |a Heuristic methods 
653 |a Accuracy 
653 |a Wavelet transforms 
653 |a Computer science 
653 |a Signal processing 
653 |a Feature selection 
653 |a Noise 
653 |a Sound 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Cardiovascular disease 
653 |a Heart 
653 |a Comparative analysis 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740432/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740432/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch