Feature Substitution Using Latent Dirichlet Allocation for Text Classification

Uloženo v:
Podrobná bibliografie
Vydáno v:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Hlavní autor: PDF
Vydáno:
Science and Information (SAI) Organization Limited
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740433
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01601105  |2 doi 
035 |a 3168740433 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Feature Substitution Using Latent Dirichlet Allocation for Text Classification 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Text classification plays a pivotal role in natural language processing, enabling applications such as product categorization, sentiment analysis, spam detection, and document organization. Traditional methods, including bag-of-words and TF-IDF, often lead to high-dimensional feature spaces, increasing computational complexity and susceptibility to overfitting. This study introduces a novel Feature Substitution technique using Latent Dirichlet Allocation (FS-LDA), which enhances text representation by replacing non-overlapping high-probability topic words. FS-LDA effectively reduces dimensionality while retaining essential semantic features, optimizing classification accuracy and efficiency. Experimental evaluations on five e-commerce datasets and an SMS spam dataset demonstrated that FS-LDA, combined with Hidden Markov Models (HMMs), achieved up to 95% classification accuracy in binary tasks and significant improvements in macro and weighted F1-scores for multiclass tasks. The innovative approach lies in FS-LDA's ability to seamlessly integrate dimensionality reduction with feature substitution, while its predictive advantage is demonstrated through consistent performance enhancement across diverse datasets. Future work will explore its application to other classification models and domains, such as social media analysis and medical document categorization, to further validate its scalability and robustness. 
653 |a Accuracy 
653 |a Datasets 
653 |a Markov chains 
653 |a Classification 
653 |a Natural language processing 
653 |a Substitutes 
653 |a Sentiment analysis 
653 |a Words (language) 
653 |a Short message service 
653 |a Documents 
653 |a Text categorization 
653 |a Computer science 
653 |a Data mining 
653 |a Feature selection 
653 |a Efficiency 
653 |a Statistical analysis 
653 |a Machine learning 
653 |a Medical research 
653 |a Semantic analysis 
653 |a Informatics 
653 |a Semantics 
653 |a Markov analysis 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740433/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740433/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch