Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
Hovedforfatter: PDF
Udgivet:
Science and Information (SAI) Organization Limited
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740445
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160130  |2 doi 
035 |a 3168740445 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Machine Learning-Based Fifth-Generation Network Traffic Prediction Using Federated Learning 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a The rapid development and advancement of 5G technologies and smart devices are associated with faster data transmission rates, reduced latency, more network capacity, and more dependability over 4G networks. However, the networks are also more complex due to the diverse range of applications and technologies, massive device connectivity, and dynamic network conditions. The dynamic and complex nature of the 5G networks requires advanced and accurate traffic prediction methods to optimize resource allocation, enhance the quality of service, and improve network performance. Hence, there is a growing demand for training methods to generate high-quality predictions capable of generalizing to new data across various parties. Traditional methods typically involve gathering data from multiple base stations, transmitting it to a central server, and performing machine learning operations on the collected data. This work suggests a hybrid model of Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and federated learning applied to 5G network traffic prediction. The model is assessed on one-step predictions, comparing its performance with standalone LSTM and GRU models within a federated learning environment. In evaluating the predictive performance of the proposed federated learning architecture compared to centralized learning, the federated learning approach results in lower Root Mean Square error (RMSE) and Mean Absolute Errors (MAE) and a 2.25 percent better Coefficient of Determination (R squared). 
653 |a Wireless networks 
653 |a Machine learning 
653 |a Performance evaluation 
653 |a 5G mobile communication 
653 |a Root-mean-square errors 
653 |a Quality of service architectures 
653 |a Communications traffic 
653 |a Resource allocation 
653 |a Network latency 
653 |a Transmission rate (communications) 
653 |a Data transmission 
653 |a Federated learning 
653 |a Predictions 
653 |a Data collection 
653 |a Deep learning 
653 |a Computer science 
653 |a Regression analysis 
653 |a Communication 
653 |a Traffic flow 
653 |a Privacy 
653 |a Time series 
653 |a Neural networks 
653 |a Computer engineering 
653 |a Subscriptions 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740445/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740445/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch