Enhanced Facial Expression Recognition Based on ResNet50 with a Convolutional Block Attention Module

Zapisane w:
Opis bibliograficzny
Wydane w:International Journal of Advanced Computer Science and Applications vol. 16, no. 1 (2025)
1. autor: PDF
Wydane:
Science and Information (SAI) Organization Limited
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3168740473
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160167  |2 doi 
035 |a 3168740473 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Enhanced Facial Expression Recognition Based on ResNet50 with a Convolutional Block Attention Module 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Deep learning techniques are becoming increasingly important in the field of facial expression recognition, especially for automatically extracting complex features and capturing spatial layers in images. However, previous studies have encountered challenges such as complex data sets, limited model generalization, and lack of comprehensive comparative analysis of feature extraction methods, especially those involving attention mechanisms and hyperparameter optimization. This study leverages data science methodologies to handle and analyze large, intricate datasets, while employing advanced computer vision algorithms to accurately detect and classify facial expressions, addressing these challenges by comprehensively evaluating FER tasks using three deep learning models (VGG19, ResNet50, and InceptionV3). The convolutional block attention module is introduced to enhance feature extraction, and the performance of the model is further improved by hyperparameter tuning. The experimental results show that the accuracy of VGG19 model is the highest 71.7\% before the module is integrated, and the accuracy of ResNet50 is the highest 72.4\% after the module is integrated. The performance of all models was significantly improved through the introduction of attention mechanisms and hyperparameter tuning, highlighting the synergistic potential of data science and computer vision in developing robust and efficient in facial expression recognition systems. 
651 4 |a Malaysia 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Data analysis 
653 |a Face recognition 
653 |a Spatial data 
653 |a Data science 
653 |a Task complexity 
653 |a Attention 
653 |a Algorithms 
653 |a Tuning 
653 |a Computer vision 
653 |a Modules 
653 |a Deep learning 
653 |a Machine learning 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Neural networks 
653 |a Emotions 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 1 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3168740473/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3168740473/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch