A hybrid multi-panel image segmentation framework for improved medical image retrieval system

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:PLoS One vol. 20, no. 2 (Feb 2025), p. e0315823
Tác giả chính: Faqir Gul
Tác giả khác: Shah, Mohsin, Mushtaq, Ali, Lal Hussain, Sadiq, Touseef, Adeel Ahmed Abbasi, Mohammad Shahbaz Khan, Alkahtani, Badr S
Được phát hành:
Public Library of Science
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3169105316
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0315823  |2 doi 
035 |a 3169105316 
045 2 |b d20250201  |b d20250228 
084 |a 174835  |2 nlm 
100 1 |a Faqir Gul 
245 1 |a A hybrid multi-panel image segmentation framework for improved medical image retrieval system 
260 |b Public Library of Science  |c Feb 2025 
513 |a Journal Article 
520 3 |a Multi-panel images play an essential role in medical diagnostics and represent approximately 50% of the medical literature. These images serve as important tools for physicians to align various medical data (e.g., X-rays, MRIs, CT scans) of a patient into a consolidated image. This consolidated multi-panel image, represented by its component sub-images, contributes to a thorough representation of the patient’s case during diagnosis. However, extracting sub-images from the multi-panel images poses significant challenges for medical image retrieval systems, especially when dealing with regular and irregular image layouts. To address these challenges, this paper presents a novel hybrid framework that significantly enhances sub-image retrieval. The framework classifies medical images, employs advanced computer vision and image processing techniques including image projection profiles and morphological operations, and performs efficient segmentation of various multi-panel image types including regular and irregular medical images. The hybrid approach ensures accurate indexing and facilitates fast retrieval of sub-images by medical image retrieval systems. To validate the proposed framework, experiments were conducted on a set of medical images from publicly available datasets, including ImageCLEFmed 2013 to ImageCLEFmed 2016. The results show better performance compared to other methods, attaining an accuracy of 90.50% in image type identification and 91% and 92% in regular and irregular multi-panel image segmentation tasks, respectively. By achieving accurate and efficient segmentation across diverse multi-panel image types, our framework demonstrates significant potential to improve the performance of medical image retrieval systems. 
653 |a Performance enhancement 
653 |a Medical databases 
653 |a Law enforcement 
653 |a Image segmentation 
653 |a Computed tomography 
653 |a Image retrieval 
653 |a Medical imaging 
653 |a Medical research 
653 |a Retrieval 
653 |a Image processing 
653 |a Computer vision 
653 |a Statistical methods 
653 |a Cultural heritage 
653 |a Environmental 
700 1 |a Shah, Mohsin 
700 1 |a Mushtaq, Ali 
700 1 |a Lal Hussain 
700 1 |a Sadiq, Touseef 
700 1 |a Adeel Ahmed Abbasi 
700 1 |a Mohammad Shahbaz Khan 
700 1 |a Alkahtani, Badr S 
773 0 |t PLoS One  |g vol. 20, no. 2 (Feb 2025), p. e0315823 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3169105316/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3169105316/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3169105316/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch